Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2024

Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl featuring the small [V6IVAs8IIIO26]4– cluster anion

  • Maren Rasmussen , Christian Näther and Wolfgang Bensch EMAIL logo

Abstract

A new arsenato-polyoxovanadate with the composition {[Ni(dien)2]3[V6As8O26]}2+·2 Cl has been crystallized under solvothermal conditions as turquoise block-like crystals. The central structural feature is the [V6IVAs8IIIO26]4– cluster anion, which is composed of two trinuclear {V3O11} groups consisting of three edge-sharing VO5 polyhedra. Pairs of pyramidal AsO3 moieties share a common corner forming As2O5 units, which interconnect the {V3O11} groups. One of the [Ni(dien)2]2+ complexes adopts the s-fac (Ni1) and the second complex the mer configuration (Ni2). The Cl anion is involved in strong hydrogen bonding interactions and links the [Ni(dien)2]2+ complexes to form twelve-membered rings which host the [V6As8O26]4– cluster anions. The Hirshfeld surface analysis yields a detailed picture of the intermolecular interactions revealing clear differences for the two unique [Ni(dien)2]2+ complexes. Intermolecular contacts also include As⋯H, O⋯H and H⋯H interactions. In the electronic spectrum the bands of dd transitions of the vanadyl group and of the Ni2+ cations overlap, preventing a detailed analysis.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Wolfgang Bensch, Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany, E-mail:

5 Supporting information

Experimental and calculated X-ray powder patterns, further structural drawings, the IR spectrum, a table with selected structural data and refinement results, and tables of interatomic distances and angles are given as supplementary material available online (https://doi.org/10.1515/znb-2023-0074).

Acknowledgments

The authors thank the State of Schleswig-Holstein for financial support.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflict of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Müller, A., Döring, J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1721.10.1002/anie.198817211Search in Google Scholar

2. Kögerler, P., Tsukerblat, B., Müller, A. Dalton Trans. 2010, 39, 21–36; https://doi.org/10.1039/b910716a.Search in Google Scholar PubMed

3. Monakhov, K.Yu., Bensch, W., Kögerler, P. Chem. Soc. Rev. 2015, 44, 8443–8483; https://doi.org/10.1039/c5cs00531k.Search in Google Scholar PubMed

4. Lühmann, H., Näther, C., Kögerler, P., Bensch, W. Chem. Commun. 2021, 57, 7661–7664; https://doi.org/10.1039/d1cc03028k.Search in Google Scholar PubMed

5. Wan, R., Jing, Z., Xu, Q., Ma, X., Ma, P., Zhang, C., Niu, J., Wang, J. Inorg. Chem. 2021, 60, 2888–2892; https://doi.org/10.1021/acs.inorgchem.0c03689.Search in Google Scholar PubMed

6. Shi, S.-Y., Chen, Y., Xu, J.-N., Zou, Y.-C., Cui, X.-B., Wang, Y., Wang, T.-G., Xu, J.-Q., Gao, Z.-M. CrystEngComm 2010, 12, 1949–1954; https://doi.org/10.1039/b921928e.Search in Google Scholar

7. Guo, H.-Y., Li, Z.-F., Zhang, X., Fu, L.-W., Hu, Y.-Y., Guo, L.-L., Cui, X.-B., Huo, Q.-S., Xu, J.-Q. CrystEngComm 2016, 18, 566–579; https://doi.org/10.1039/c5ce01983d.Search in Google Scholar

8. Guo, H.-Y., Zhang, X., Xiao, L.-N., Cui, X.-B. Dalton Trans. 2017, 46, 8022–8026; https://doi.org/10.1039/c7dt01229b.Search in Google Scholar PubMed

9. Mahnke, L. K., Kondinski, A., Warzok, U., Näther, C., van Leusen, J., Schalley, C. A., Monakhov, K.Yu., Kögerler, P., Bensch, W. Angew. Chem. Int. Ed. 2018, 57, 2972–2975; https://doi.org/10.1002/anie.201712417.Search in Google Scholar PubMed

10. Guo, H.-Y., Qi, H., Zhang, X., Cui, X.-B. Molecules 2022, 27, 4424; https://doi.org/10.3390/molecules27144424.Search in Google Scholar PubMed PubMed Central

11. Wendt, M., Mahnke, L. K., Näther, C., van Leusen, J., Kögerler, P., Bensch, W. Dalton Trans. 2018, 47, 6672–6674; https://doi.org/10.1039/c8dt00715b.Search in Google Scholar PubMed

12. Zhou, J., Zhao, J. W., Wei, Q., Zhang, J., Yang, G. Y. J. Am. Chem. Soc. 2014, 136, 5065–5071; https://doi.org/10.1021/ja413218w.Search in Google Scholar PubMed

13. Zhou, J., Zheng, S.-T., Fang, W.-H., Yang, G.-Y. Eur. J. Inorg. Chem. 2009, 5075–5078.10.1002/ejic.200900596Search in Google Scholar

14. Wutkowski, A., Evers, N., Bensch, W. Z. Anorg. Allg. Chem. 2011, 637, 2205–2210; https://doi.org/10.1002/zaac.201100330.Search in Google Scholar

15. Bu, W.-M., Ye, L., Yang, G.-Y., Shao, M.-C., Fan, Y.-G., Xu, J.-Q. Chem. Commun. 2000, 1279–1280.10.1039/b003359fSearch in Google Scholar

16. Khan, M. I., Chen, Q., Zubieta, J. Inorg. Chim. Acta 1993, 212, 199–206.Search in Google Scholar

17. Müller, A., Döring, J., Khan, M. I., Wittneben, V. Angew. Chem. Int. Ed. Engl. 1991, 30, 210–212; https://doi.org/10.1002/anie.199102101.Search in Google Scholar

18. Arumuganathan, T., Das, S. K. Inorg. Chem. 2009, 48, 496–507; https://doi.org/10.1021/ic8002383.Search in Google Scholar PubMed

19. Khan, M. I., Chang, Y., Chen, Q., Hope, H., Parking, S., Hoshorn, D. P., Zubieta, J. Angew. Chem. Int. Ed. Engl. 1992, 31, 1197–1200.Search in Google Scholar

20. Dumas, E., Livage, C., Sabine Halut, S., Herve, G. Chem. Commun. 1996, 2437–2438.10.1039/CC9960002437Search in Google Scholar

21. Kondinski, A., Rasmussen, M., Mangelsen, S., Pienack, N., Simjanoski, V., Näther, C., Stares, D. L., Schalley, C. A., Bensch, W. Chem. Sci. 2022, 13, 6397–6412; https://doi.org/10.1039/d2sc01004f.Search in Google Scholar PubMed PubMed Central

22. Rasmussen, M., Näther, C., Bensch, W. Crystals 2022, 12, 1473; https://doi.org/10.3390/cryst12101473.Search in Google Scholar

23. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

24. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

25. Zhu, H.-L., Li, S.-Y., Pan, Y.-J., YuKristallogr, K.-B. Z. Kristallogr. NCS 2003, 218, 43–44; https://doi.org/10.1524/ncrs.2003.218.jg.43.Search in Google Scholar

26. Rodriguez, V., Gutierrez-Zorrilla, J. M., Vitoria, P., Luque, A., Roman, P., Martinez-Ripoll, M. Inorg. Chim. Acta 1999, 290, 57–63.10.1016/S0020-1693(99)00115-2Search in Google Scholar

27. Muga, I., Vitoria, P., Gutierrez-Zorrilla, J. M., Luque, A., Roman, P. Acta Crystallogr. 2002, E58, m524–m526.10.1107/S160053680201591XSearch in Google Scholar

28. Cumby, J., Attfield, J. P. Nat. Commun. 2017, 8, 14235; https://doi.org/10.1038/ncomms14235.Search in Google Scholar PubMed PubMed Central

29. Antonova, E., Näther, C., Bensch, W. Dalton Trans. 2012, 41, 1338–1344; https://doi.org/10.1039/c1dt11635e.Search in Google Scholar PubMed

30. Wendt, M., Näther, C., Bensch, W. Chem. Eur. J. 2016, 22, 7747–7751; https://doi.org/10.1002/chem.201601401.Search in Google Scholar PubMed

31. Qi, Y., Li, Y., Wang, E., Jin, H., Zhang, Z., Wang, X., Chang, S. Inorg. Chim. Acta 2007, 360, 1841–1853; https://doi.org/10.1016/j.ica.2006.09.021.Search in Google Scholar

32. Qi, Y., Li, Y., Wang, E., Zhang, Z., Chang, S. Dalton Trans. 2008, 2335–2345.10.1039/b713115aSearch in Google Scholar PubMed

33. Cui, X.-B., Xu, J.-Q., Li, Y., Sun, Y.-H., Ye, L., Yang, G.-Y. J. Mol. Struct. 2003, 657, 397–403; https://doi.org/10.1016/s0022-2860(03)00501-5.Search in Google Scholar

34. Pitzschke, D., Wang, J., Hoffmann, R.-D., Pöttgen, R., Bensch, W. Angew. Chem. Int. Ed. 2006, 45, 1305–1308; https://doi.org/10.1002/anie.200503140.Search in Google Scholar PubMed

35. Wendt, M., Näther, C., van Leusen, J., Kögerler, P., Bensch, W. Z. Naturforsch. 2018, 73b, 773–779.10.1515/znb-2018-0092Search in Google Scholar

36. Wang, C., Zhou, G., Zhang, Z., Zhu, D., Xu, Y. J. Coord. Chem. 2011, 64, 1198–1206; https://doi.org/10.1080/00958972.2011.565056.Search in Google Scholar

37. Guo, H.-Y., Li, Z.-F., Fu, L.-W., Hu, Y.-Y., Cui, X.-B., Liu, B.-J., Xu, J.-N., Huo, Q.-S., Xu, J.-Q. Inorg. Chim. Acta 2016, 443, 118–125; https://doi.org/10.1016/j.ica.2015.12.033.Search in Google Scholar

38. Huan, G., Greaney, M. A., Jacobson, A. J. J. Chem. Soc., Chem. Commun. 1991, 260–261.Search in Google Scholar

39. Spackman, M. A., McKinnon, J. J. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Search in Google Scholar

40. Spackman, M. A., Jayatilaka, D. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar

41. Spackman, M. A. Phys. Scr. 2013, 87, 48103.10.1088/0031-8949/87/04/048103Search in Google Scholar

42. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

43. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J., Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5806–5812; https://doi.org/10.1021/jp8111556.Search in Google Scholar PubMed PubMed Central

44. Krause, D.-C., Mangelsen, S., Näther, C., Bensch, W. Z. Naturforsch. 2021, 76b, 775–782.10.1515/znb-2021-0129Search in Google Scholar

45. Liu, X., Zhou, J., He, J., Huang, Z.-W. Z. Naturforsch. 2011, 66b, 659–663.Search in Google Scholar

46. Schmidtke, H. H., Garthoff, D. Inorg. Chim. Acta 1968, 2, 357–362.10.1016/S0020-1693(00)87061-9Search in Google Scholar

47. Ballhausen, C. J., Gray, H. B. Inorg. Chem. 1962, 1, 111–122; https://doi.org/10.1021/ic50001a022.Search in Google Scholar

48. Roe, S. P., Hill, J. O., Magee, R. J. Montsh. Chem. 1991, 122, 467–478; https://doi.org/10.1007/bf00809798.Search in Google Scholar

49. Schweinfurth, D., Krzystek, J., Schapiro, I., Demeshko, S., Klein, J., Telser, J., Ozarowski, A., Su, C.-Y., Meyer, F., Atanasov, M., Neese, F., Sarkar, B. Inorg. Chem. 2013, 52, 6880–6892; https://doi.org/10.1021/ic3026123.Search in Google Scholar PubMed

50. Satyanarayana, N., Radhakrishna, S. J. Chem. Phys. 1985, 83, 529–534; https://doi.org/10.1063/1.449858.Search in Google Scholar

51. Selbin, J. Chem. Rev. 1965, 65, 153–175; https://doi.org/10.1021/cr60234a001.Search in Google Scholar

52. Garribba, E., Micera, G., Panzanelli, A., Sanna, D. Inorg. Chem. 2003, 42, 3981–3987; https://doi.org/10.1021/ic0260567.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0074s).


Received: 2023-09-07
Accepted: 2023-10-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0074/html
Scroll to top button