Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2024

Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects

  • Morten Weiss , Anja Hofmann and Roland Marschall EMAIL logo

Abstract

The optical band gap of the semiconductor CuTa2O6, synthesised via solid-state reaction, can be greatly reduced by annealing in ammonia, which leads to a significant red-shift of the visible light absorption. Using X-ray photoelectron spectroscopy (XPS), we have shown that this absorption extension does not result from the incorporation of nitrogen, but can be attributed to copper defects formed under the reducing conditions of ammonia treatment. Photocatalytic hydrogen evolution experiments were used to investigate the influence of these defects on the photocatalytic performance. We have further shown that CuTa2O6 with similar increased visible light absorption can be prepared by annealing with an organic reducing agent – sodium citrate – in inert gas atmosphere.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Roland Marschall, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany, E-mail:

Acknowledgments

The authors would like to thank Julia Schulze (Justus-Liebig University Giessen, Germany) for mercury intrusion measurement, and Dr. Jana Timm for physisorption measurements (University of Bayreuth). The authors also thank the Bavarian Polymer Institute (BPI) Keylab “Device Engineering” for use of XPS and the Keylab “Electron and Optical Microscopy” for use of the SEM. M.W. and R.M. gratefully acknowledge funding by the BMBF (German Ministry of Education and Research), research project CO2SimO (033RC029B).

  1. Research ethics: Not applicable.

  2. Author contributions: R.M. planed the study, M.W. and A.H. performed the experiments. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was funded by the BMBF (German Ministry of Education and Research), research project CO2SimO (033RC029B).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. van de Krol, R., Parkinson, B. A. Perspectives on the photoelectrochemical storage of solar energy. MRS Energy Sustain. 2017, 4, E13; https://doi.org/10.1557/mre.2017.15.Search in Google Scholar

2. Ganesh, I. Solar fuels vis-À-vis electricity generation from sunlight: the current state-of-the-art (a review). Renew.Sustain. Energy Rev. 2015, 44, 904–932; https://doi.org/10.1016/j.rser.2015.01.019.Search in Google Scholar

3. Chen, D., Wang, Z., Ren, T., Ding, H., Yao, W., Zong, R., Zhu, Y. Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 2014, 118, 15300–15307; https://doi.org/10.1021/jp5033349.Search in Google Scholar

4. Banerjee, S., Pillai, S. C., Falaras, P., O’Shea, K. E., Byrne, J. A., Dionysiou, D. D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554; https://doi.org/10.1021/jz501030x.Search in Google Scholar PubMed

5. Ouyang, S., Ye, J. β-AgAl1−xGaxO2 solid-solution photocatalysts: continuous modulation of electronic structure toward high-performance visible-light photoactivity. J. Am. Chem. Soc. 2011, 133, 7757–7763; https://doi.org/10.1021/ja110691t.Search in Google Scholar PubMed

6. Muresan, N. M., Willkomm, J., Mersch, D., Vaynzof, Y., Reisner, E. Immobilization of a molecular cobaloxime catalyst for hydrogen evolution on a mesoporous metal oxide electrode. Angew. Chem. Int. Ed. 2012, 51, 12749–12753; https://doi.org/10.1002/anie.201207448.Search in Google Scholar PubMed

7. Wang, P., Huang, B., Dai, Y., Whangbo, M. H. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813–9825; https://doi.org/10.1039/c2cp40823f.Search in Google Scholar PubMed

8. Hosogi, Y., Kato, H., Kudo, A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. J. Phys. Chem. C 2008, 112, 17678–17682; https://doi.org/10.1021/jp805693j.Search in Google Scholar

9. Boltersdorf, J., Zoellner, B., Fancher, C. M., Jones, J. L., Maggard, P. A. Single- and double-site substitutions in mixed-metal oxides: adjusting the band edges toward the water redox couples. J. Phys. Chem. C 2016, 120, 19175–19188; https://doi.org/10.1021/acs.jpcc.6b05758.Search in Google Scholar

10. Weiss, M., Bredow, T., Marschall, R. The influence of tin(II) incorporation on visible light absorption and photocatalytic activity in defect‐pyrochlores. Chem. Eur. J. 2018, 24, 18535–18543; https://doi.org/10.1002/chem.201803276.Search in Google Scholar PubMed

11. Ichihara, F., Sieland, F., Pang, H., Philo, D., Duong, A.-T., Chang, K., Kako, T., Bahnemann, D. W., Ye, J. Photogenerated charge carriers dynamics on La- and/or Cr-doped SrTiO3 nanoparticles studied by transient absorption spectroscopy. J. Phys. Chem. C 2020, 124, 1292–1302; https://doi.org/10.1021/acs.jpcc.9b09324.Search in Google Scholar

12. Zhuang, H., Zhang, Y., Chu, Z., Long, J., An, X., Zhang, H., Lin, H., Zhang, Z., Wang, X. Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2. Phys. Chem. Chem. Phys. 2016, 18, 9636–9644; https://doi.org/10.1039/c6cp00580b.Search in Google Scholar PubMed

13. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271; https://doi.org/10.1126/science.1061051.Search in Google Scholar PubMed

14. Marschall, R., Wang, L. Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today 2014, 225, 111–135; https://doi.org/10.1016/j.cattod.2013.10.088.Search in Google Scholar

15. Mukherji, A., Marschall, R., Tanksale, A., Sun, C., Smith, S. C., Lu, G. Q., Wang, L. N-doped CsTaWO6 as a new photocatalyst for hydrogen production from water splitting under solar irradiation. Adv. Funct. Mater. 2011, 21, 126–132; https://doi.org/10.1002/adfm.201000591.Search in Google Scholar

16. Sun, C., Mukherji, A., Liu, G., Wang, L., Smith, S. C. Improved visible light absorption of HTaWO6 induced by nitrogen doping: an experimental and theoretical study. Chem. Phys. Lett. 2011, 501, 427–430; https://doi.org/10.1016/j.cplett.2010.11.036.Search in Google Scholar

17. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 1980, 25, 41–54; https://doi.org/10.1016/0038-092x(80)90405-3.Search in Google Scholar

18. Sun, J., Zhao, X., Sun, H., Fan, W. Theoretical study of the origin of the enhanced visible light photocatalytic activity of n-doped CsTaWO6: charge compensation effects modulated by n and other defects. J. Solid State Chem. 2012, 194, 352–360; https://doi.org/10.1016/j.jssc.2012.05.020.Search in Google Scholar

19. Kuriki, R., Ichibha, T., Hongo, K., Lu, D., Maezono, R., Kageyama, H., Ishitani, O., Oka, K., Maeda, K. A stable, narrow-gap oxyfluoride photocatalyst for visible-light hydrogen evolution and carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 6648–6655; https://doi.org/10.1021/jacs.8b02822.Search in Google Scholar PubMed

20. Xiao, J., Nishimae, S., Vequizo, J. J. M., Nakabayashi, M., Hisatomi, T., Li, H., Lin, L., Shibata, N., Yamakata, A., Inoue, Y., Domen, K. Enhanced overall water splitting by a zirconium‐doped TaON‐based photocatalyst. Angew. Chem. Int. Ed. 2022, 61, e202116573; https://doi.org/10.1002/ange.202116573.Search in Google Scholar

21. Hofmann, A., Weiss, M., Timm, J., Marschall, R. Perovskite‐type oxynitride nanofibers performing photocatalytic oxygen and hydrogen generation. Adv. Mater. Interf. 2021, 8, 2100813; https://doi.org/10.1002/admi.202100813.Search in Google Scholar

22. Toe, C. Y., Zheng, Z., Wu, H., Scott, J., Amal, R., Ng, Y. H. Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction. Angew. Chem. Int. Ed. 2018, 57, 13613–13617; https://doi.org/10.1002/anie.201807647.Search in Google Scholar PubMed

23. Xing, H., Lei, E., Guo, Z., Zhao, D., Li, X., Liu, Z. Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorg. Chem. Front. 2019, 6, 2488–2499; https://doi.org/10.1039/c9qi00780f.Search in Google Scholar

24. Weiss, M., Marschall, R. Syntheses and characterisation of P-type copper niobium oxides for photocatalytic hydrogen generation. Appl. Catal., A 2023, 661, 119234; https://doi.org/10.1016/j.apcata.2023.119234.Search in Google Scholar

25. Szwagierczak, D., Kulawik, J. Sintering and dielectric properties of Cu2Ta4O12 ceramics. J. Eur. Ceram. Soc. 2008, 28, 2075–2083; https://doi.org/10.1016/j.jeurceramsoc.2008.01.015.Search in Google Scholar

26. Heinrich, A., Renner, B., Lux, R., Ebbinghaus, S. G., Reller, A., Stritzker, B. Influence of oxygen pressure, temperature and substrate/target distance on Cu2Ta4O12 thin films prepared by pulsed-laser deposition. Thin Solid Films 2005, 479, 12–16; https://doi.org/10.1016/j.tsf.2004.11.103.Search in Google Scholar

27. Chen, K., Liu, M., Li, G., Wang, J., Lei, X., Yu, Q., Hu, C., Li, Z., Liu, L. Enhancement of dielectric response by the interaction of point defect and grain boundary in copper tantalate oxides. Ceram. Int. 2021, 47, 16178–16185; https://doi.org/10.1016/j.ceramint.2021.02.194.Search in Google Scholar

28. Felten, E. J. The preparation of CuNb2O6 and CuTa2O6. J. Inorg. Nucl. Chem. 1967, 29, 1168–1171; https://doi.org/10.1016/0022-1902(67)80105-2.Search in Google Scholar

29. Propach, V., Reinen, D. Untersuchungen an Kristallgittern Vom Trirutil-Niobit- Und Perowskittyp. Z. Anorg. Allg. Chem. 1969, 369, 278–294; https://doi.org/10.1002/zaac.19693690318.Search in Google Scholar

30. Longo, J. M., Sleight, A. W. CuTa2O6 – crystal growth and characterization. Mater. Res. Bull. 1975, 10, 1273–1278; https://doi.org/10.1016/0025-5408(75)90086-0.Search in Google Scholar

31. Propach, V. Kristallstruktur von Ca0,5Cu1,5Ti2O6, Cu1,5TaTiO6 und CuTa2O6. Das Spektroskopische Verhalten von Cu2+‐Ionen in kuboktaedrischer Umgebung. Z. Anorg. Allg. Chem. 1977, 435, 161–171; https://doi.org/10.1002/zaac.19774350122.Search in Google Scholar

32. Vincent, H., Bochu, B., Aubert, J. J., Joubert, J. C., Marezio, M. Structure cristalline de CuTa2O6. J. Solid State Chem. 1978, 24, 245–253; https://doi.org/10.1016/0022-4596(78)90016-6.Search in Google Scholar

33. Nguyen Ngoc, H., Petitbon, F., Fabry, P. Investigations on the mixed conductivity of copper tantalate. Solid State Ionics 1996, 92, 183–192; https://doi.org/10.1016/s0167-2738(96)00492-4.Search in Google Scholar

34. Wa Ilunga, P. N., Pakkanen, T. A., Pakkanen, T. T., Venäläinen, T., Schilling, B. E. R., Seip, R., Taugbøl, K. Phase analysis studies in the system Cu2O-CuO-Ta2O5. Acta Chem. Scand. 1983, A37, 117–123; https://doi.org/10.3891/acta.chem.scand.37a-0117.Search in Google Scholar

35. Krabbes, I., Langbein, H. Herstellung von CuTa2O6 - Von der Trirutil-zZur Perowskit-Struktur. Z. Naturforsch. 1996, 51b, 1605–1610.10.1515/znb-1996-1113Search in Google Scholar

36. Ebbinghaus, S. G. Influence of composition and thermal treatment on the properties of Cu2+xTa4O12+δ. Prog. Solid State Chem. 2007, 35, 421–431; https://doi.org/10.1016/j.progsolidstchem.2007.01.032.Search in Google Scholar

37. Renner, B., Lunkenheimer, P., Schetter, M., Loidl, A., Reller, A., Ebbinghaus, S. G. Dielectric behavior of copper tantalum oxide. J. Appl. Phys. 2004, 96, 4400–4404; https://doi.org/10.1063/1.1787914.Search in Google Scholar

38. Dąbrowska, G., Filipek, E. Solid state synthesis and properties of new semiconducted CuTa2−xSbxO6 solid solution. Solid State Sci. 2021, 119, 106686; https://doi.org/10.1016/j.solidstatesciences.2021.106686.Search in Google Scholar

39. Dąbrowska, G., Filipek, E., Tabero, P. New solid solution and phase equilibria in the subsolidus area of the three-component CuO–V2O5–Ta2O5 oxide system. Materials 2022, 15, 232; https://doi.org/10.3390/ma15010232.Search in Google Scholar PubMed PubMed Central

40. Golubev, A., Dinnebier, R. E., Schulz, A., Kremer, R. K., Langbein, H., Senyshyn, A., Law, J. M., Hansen, T. C., Koo, H. J., Whangbo, M. H. Structural and magnetic properties of the trirutile-type 1D-heisenberg anti-ferromagnet CuTa2O6. Inorg. Chem. 2017, 56, 6318–6329; https://doi.org/10.1021/acs.inorgchem.7b00421.Search in Google Scholar PubMed

41. Baste, Y. R., Kajale, D. D. Photocatalyst for degradation of brilliant bluedye by CuTa2O6 – a green chemistry approach. Int. J. Chem. Phys. Sci. 2018, 7, 32–38.Search in Google Scholar

42. Brugger, P. A., Cuendet, P., Graetzel, M. Ultrafine and specific catalysts affording efficient hydrogen evolution from water under visible light illumination. J. Am. Chem. Soc. 1981, 103, 2923–2927; https://doi.org/10.1021/ja00401a002.Search in Google Scholar

43. Dilla, M., Mateblowski, A., Ristig, S., Strunk, J. Photocatalytic CO2 reduction under continuous flow high-purity conditions: influence of light intensity and H2O concentration. ChemCatChem 2017, 9, 4345–4352; https://doi.org/10.1002/cctc.201701189.Search in Google Scholar

44. Ilunga, P. N. W., Sundberg, M. On tantalum-rich phases in the system CuO Ta2O5. Mater. Res. Bull. 1984, 19, 807–813; https://doi.org/10.1016/0025-5408(84)90039-4.Search in Google Scholar

45. Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., Wondratschek, H. Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans. 2003, 76, 155–170; https://doi.org/10.1080/0141159031000076110.Search in Google Scholar

46. Dey, S., Ricciardo, R. A., Cuthbert, H. L., Woodward, P. M. Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the Wolframite structure. Inorg. Chem. 2014, 53, 4394–4399; https://doi.org/10.1021/ic4031798.Search in Google Scholar PubMed

47. Weiss, M., Wirth, B., Marschall, R. Photoinduced defect and surface chemistry of niobium tellurium oxides ANbTeO6 (A = K, Rb, Cs) with defect-pyrochlore structure. Inorg. Chem. 2020, 59, 8387–8395; https://doi.org/10.1021/acs.inorgchem.0c00811.Search in Google Scholar PubMed

48. Tauc, J., Grigorovici, R., Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637; https://doi.org/10.1002/pssb.19660150224.Search in Google Scholar

49. Harrington, S. P., Devine, T. M. Analysis of electrodes displaying frequency dispersion in Mott-Schottky tests. J. Electrochem. Soc. 2008, 155, C381–C386; https://doi.org/10.1149/1.2929819.Search in Google Scholar

50. Yang, Y., Xu, D., Wu, Q., Diao, P. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 2016, 6, 35158; https://doi.org/10.1038/srep35158.Search in Google Scholar PubMed PubMed Central

51. Deo, M., Möllmann, A., Haddad, J., Ünlü, F., Kulkarni, A., Liu, M., Tachibana, Y., Stadler, D., Bhardwaj, A., Ludwig, T., Kirchartz, T., Mathur, S. Tantalum oxide as an efficient alternative electron transporting layer for perovskite solar cells. Nanomaterials 2022, 12, 780; https://doi.org/10.3390/nano12050780.Search in Google Scholar PubMed PubMed Central

52. Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334; https://doi.org/10.1002/sia.6239.Search in Google Scholar

53. Biesinger, M. C., Lau, L. W. M., Gerson, A. R., Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898; https://doi.org/10.1016/j.apsusc.2010.07.086.Search in Google Scholar

54. Sarma, D. D., Rao, C. N. R. XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron Spectros. Relat. Phenom. 1980, 20, 25–45; https://doi.org/10.1016/0368-2048(80)85003-1.Search in Google Scholar

55. Ho, S. F., Contarini, S., Rabalais, J. W. Ion-beam-induced chemical changes in the oxyanions (MOyn-) and oxides (MOx) where M = Cr, Mo, W, V, Nb, and Ta. J. Phys. Chem. 1987, 91, 4779–4788; https://doi.org/10.1021/j100302a027.Search in Google Scholar

56. Hara, M., Chiba, E., Ishikawa, A., Takata, T., Kondo, J. N., Domen, K. Ta3N5 and TaON thin films on ta foil: surface composition and stability. J. Phys. Chem. B 2003, 107, 13441–13445; https://doi.org/10.1021/jp036189t.Search in Google Scholar

57. Cahen, D., Ireland, P. J., Kazmerski, L. L., Thiel, F. A. X-Ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CuInSe2 photoelectrodes. J. Appl. Phys. 1985, 57, 4761–4771; https://doi.org/10.1063/1.335341.Search in Google Scholar

58. Chun, W. J., Ishikawa, A., Fujisawa, H., Takata, T., Kondo, J. N., Hara, M., Kawai, M., Matsumoto, Y., Domen, K. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 2003, 107, 1798–1803; https://doi.org/10.1002/chin.200321011.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0094).


Received: 2023-10-30
Accepted: 2023-11-30
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0094/html
Scroll to top button