Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2024

Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19

  • Robert Glaum EMAIL logo , Marcos Schöneborn , Felix Reinauer , Halil Shaqiri and Saiful M. Islam

Abstract

The crystal structures of TiIII4[Si2O(PO4)6] ( P 3 , Z = 3, a = 14.733(1), c = 7.363(1) Å, R1 = 0.040, wR2 = 0.098, 7649 ind. refl., 170 variables), FeII0.79TiIII2.42TiIV0.79[Si2O(PO4)6] ( P 3 , Z = 3, a = 14.6534(2), c = 7.3829(1) Å, R1 = 0.036, wR2 = 0.088, 4026 ind. refl., 171 variables), and TiIII2TiIV6(PO4)6[Si2O(PO4)6] ( R 3 , Z = 1, a = 8.446(2), c = 44.21(2) Å, R1 = 0.047, wR2 = 0.120, 1373 ind. refl., 109 variables) have been refined from single-crystal data. The structures show hexagonal closest packing of phosphate groups with metal cations and [Si2O] groups occupying octahedral voids [□(PO4)6]. The close relationship of these and other silicophosphate structures to the NiAs and β-Fe2(SO4)3 (see also NaZr2(PO4)3 “NASICON”) structure types is rationalized by group/subgroup considerations. This symmetry approach shows that systematic twinning is highly likely in silicophosphates, thus possibly leading to faulty crystal structure refinements. Our investigation strongly suggests that the proper composition of silicophosphates “MIII3P5SiO19” (M = Cr, V, Fe, Mo) reported in literature is actually MIII4-[Si2O(PO4)6]. In the mixed-valent compounds oxidation states were assigned to the cation sites by comparison to Ti2O3, TiP2O7 and FeTiO3. The powder reflectance spectrum of dark-blue FeII0.79TiIII2.42TiIV0.79[Si2O(PO4)6] shows a strong IVCT transition at ν ˜  = 17,500 cm−1, and magnetic susceptibility data agree very well with the proposed oxidation states.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Robert Glaum, Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany, E-mail:

Funding source: Rheinische Friedrich-Wilhelms-Universität Bonn

Acknowledgment

We thank Dr. Jörg Daniels, Axel Pelka (both Universität Bonn, Germany) and Chun-Yu Chen (NTHU Hsinchu, Taiwan) for measuring the single-crystal data sets. We also thank Prof. Johannes Beck (Universität Bonn, Germany) and Prof. Sue-Lein Wang (NTHU Hsinchu, Taiwan) for the friendly provision of the instruments. M. S. thanks Profs. Sue-Lein Wang (NTHU Hsinchu, Taiwan) and Kwang-Hwa Lii (NCU Chungli, Taiwan) and all of their group members for their great hospitality and stimulating scientific support. A scholarship provided by the DAAD is gratefully acknowledged.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors contributed equally to this manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This research was funded by Rheinische Friedrich-Wilhelms-Universität Bonn.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Glaum, R. New Studies on Anhydrous Transition Metal Phosphates (In German). Thesis of Habilitation, Universität Gießen, Gießen, 1999. http://geb.uni-giessen.de/geb/volltexte/1999/124/.Search in Google Scholar

2. Baur, W. H., Ohta, T. J. Solid State Chem. 1982, 44, 50–59; https://doi.org/10.1016/0022-4596(82)90400-5.Search in Google Scholar

3. Kohler, H., Schulz, H. Mater. Res. Bull. 1986, 21, 23–31. https://doi.org/10.1016/0025-5408(86)90025-5.Search in Google Scholar

4. Durif, A., Averbuch-Pouchot, M. T., Guitel, J. C. Acta Crystallogr. 1976, B32, 2957–2960. https://doi.org/10.1107/S0567740876009370.Search in Google Scholar

5. Königstein, K., Jansen, M. Chem. Ber. 1994, 127, 1213–1218; https://doi.org/10.1002/cber.19941270706.Search in Google Scholar

6. Dickens, B., Brown, W. E. Tschermaks. Miner. Petr. Mitt. 1971, 16, 1–27. https://doi.org/10.1007/BF01099075.Search in Google Scholar

7. Endel, G., Fischer, U. Z. Kristallogr. 1985, 173, 101–112; https://doi.org/10.1524/zkri.1985.173.1-2.101.Search in Google Scholar

8. Schmidt, A. Phosphide und Phosphate des Cobalts – Kristallisation, Thermodynamik, Strukturen und Farben (in German). Dissertation, Universität Gießen, Gießen, 2002.Search in Google Scholar

9. Glaum, R., Schmidt, A. Acta Crystallogr. 1996, C52, 762–764; https://doi.org/10.1107/S0108270195016982.Search in Google Scholar

10. Trojan, M., Brandová, D., Fábry, J., Hybler, J., Jurek, K., Petříček, V. Acta Crystallogr. 1987, C43, 2038–2040; https://doi.org/10.1107/S0108270187089091.Search in Google Scholar

11. Bennazha, J., Boukhari, A., Holt, E. M. Acta Crystallogr. 2001, E57, 12–14.10.1107/S1600536801001519Search in Google Scholar

12. Reinauer, F. Untersuchungen im Dreistoffsystem Titan/Phosphor/Sauerstoff mit einem Seitenblick auf Titan(III)-silicophosphate (in German). Dissertation, Universität Gießen, Gießen, 1998.Search in Google Scholar

13. Leclaire, A., Chahboun, H., Groult, D., Raveau, B. J. Solid State Chem. 1986, 65, 168–177. https://doi.org/10.1016/0022-4596(86)90051-4.Search in Google Scholar

14. Glaum, R. Darstellung und Kristallisation von Phosphiden und wasserfreien Phosphaten der Übergangsmetalle mittels chemischer Transportreaktionen –Thermochemische, röntgenkristallographische und magnetochemische Untersuchungen (in German). Dissertation, Universität Gießen, Gießen, 1990.Search in Google Scholar

15. Elbouaanani, L. K., Malaman, B., Gerardin, R., Ouladdiaf, B. J. Solid State Chem. 2002, 164, 71–80. https://doi.org/10.1006/jssc.2001.9449.Search in Google Scholar

16. Leclaire, A., Lamire, M., Raveau, B. Acta Crystallogr. 1988, C44, 1181–1184. https://doi.org/10.1107/S0108270188003580.Search in Google Scholar

17. Wang, S.-L., Wang, C.-C., Lii, K.-H. J. Solid State Chem. 1988, 74, 409–413. https://doi.org/10.1016/0022-4596(88)90372-6.Search in Google Scholar

18. Hanawa, M., Kobayashi, T., Imoto, H. Z. Anorg. Allg. Chem. 2000, 626, 216–222. https://doi.org/10.1002/(SICI)1521-3749(200001)626:1%3C216::AID-ZAAC216%3E3.0.CO;2-O.10.1002/(SICI)1521-3749(200001)626:1<216::AID-ZAAC216>3.3.CO;2-FSearch in Google Scholar

19. Schöneborn, M. Gruppentheoretische Behandlung kristallchemischer und kristallographischerProbleme – Synthese und Kristallstrukturen polynärer Phosphate und Silicophosphate des Titans (in German). Dissertation, Universität Bonn, Bonn, 2008. https://nbn-resolving.org/urn:nbn:de:hbz:5N-15425.Search in Google Scholar

20. Schöneborn, M., Hoffbauer, W., Schmedt auf der Günne, J., Glaum, R. Z. Naturforsch. 2006, 61b, 741–748. https://doi.org/10.1515/znb-2006-0614.Search in Google Scholar

21. Middlemiss, N., Calvo, C. Acta Crystallogr. 1976, B32, 2896–2898.10.1107/S0567740876009151Search in Google Scholar

22. Mayer, H. Monatsh. Chem. 1974, 105, 46–54. https://doi.org/10.1007/BF00911286.Search in Google Scholar

23. Leclaire, A., Raveau, B. J. Solid State Chem. 1988, 75, 397–402. https://doi.org/10.1016/0022-4596(88)90180-6.Search in Google Scholar

24. Rössel, P., Wolfshohl, A., Daniels, J., Glaum, R. Z. Anorg. Allg. Chem. 2022, 648, e202200013 (9 pages). https://doi.org/10.1002/zaac.202200013.Search in Google Scholar

25. Panagiotidis, K., Glaum, R., Hoffbauer, W., Weber, J., Schmedt auf der Günne, J. Z. Anorg. Allg. Chem. 2008, 634, 2922–2932. https://doi.org/10.1002/zaac.200800376.Search in Google Scholar

26. Elbouaanani, L. K., Malaman, B., Gerardin, R. J. Solid State Chem. 1999, 147, 565–572; https://doi.org/10.1006/jssc.1999.8419.Search in Google Scholar

27. Badrtdinov, D. I., Ding, L., Ritter, C., Hembacher, J., Ahmed, N., Skourski, Yu., Tsirlin, A. Phys. Rev. B 2021, 104, 094428 (10 pages). https://doi.org/10.1103/PhysRevB.104.094428.Search in Google Scholar

28. Fukuoka, H., Imoto, H., Saito, T. J. Solid State Chem. 1996, 121, 247–250. https://doi.org/10.1006/jssc.1996.0035.Search in Google Scholar

29. Leclaire, A., Borel, M. M., Grandin, A., Raveau, B. J. Solid State Chem. 1989, 80, 250–255. https://doi.org/10.1016/0022-4596(89)90087-X.Search in Google Scholar

30. Islam, M. S., Glaum, R., Pelka, A., Daniels, J., Hoffbauer, W. Z. Anorg. Allg. Chem. 2013, 639, 2463–2472. https://doi.org/10.1002/zaac.201300289.Search in Google Scholar

31. ICSD Web Version 5.1.0. FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Eggenstein-Leopoldshafen, Germany, 2023.Search in Google Scholar

32. Bergerhoff, G., Hundt, R., Sievers, R., Brown, I. D. J. Chem. Inf. Comput. Sci. 1983, 23, 66–69; https://doi.org/10.1021/ci00038a003.Search in Google Scholar

33. Bergerhoff, G., Brown, I. D. In Crystallographic Databases; Allen, F. H., Bergerhoff, G., Sievers, R., Eds.; International Union of Crystallography: Chester, 1987; pp. 77–95.Search in Google Scholar

34. Zagorac, D., Müller, H., Rühl, S., Zagorac, J., Rehme, S. J. Appl. Crystallogr. 2019, 52, 918–925; https://doi.org/10.1107/S160057671900997X.Search in Google Scholar PubMed PubMed Central

35. Powder Diffraction File PDF-2, Release 2020, International Center for Diffraction Data: Newtown Square, PA (USA).Search in Google Scholar

36. Gates-Rector, S., Blanton, T. Powder Diffr. 2019, 34, 352–360. https://doi.org/10.1017/S0885715619000812.Search in Google Scholar

37. Netzsch, P., Gross, P., Takahashi, H., Höppe, H. Inorg. Chem. 2018, 57, 8530–8539. https://doi.org/10.1021/acs.inorgchem.8b01234.Search in Google Scholar PubMed

38. Leclaire, A., Raveau, B. J. Solid State Chem. 1987, 71, 283–290; https://doi.org/10.1016/0022-4596(87)90235-0.Search in Google Scholar

39. Schöneborn, M., Glaum, R. Z. Anorg. Allg. Chem. 2008, 634, 1843–1850; https://doi.org/10.1002/zaac.200800186.Search in Google Scholar

40. Hagman, L. O., Kierkegaard, P., Karvonen, P., Virtanen, A. I., Paasivirta, J. Acta Chem. Scand. 1968, 22, 1822–1832; https://doi.org/10.3891/acta.chem.scand.22-1822.Search in Google Scholar

41. Hong, H. Mater. Res. Bull. 1976, 11, 173–182. https://doi.org/10.1016/0025-5408(76)90073-8.Search in Google Scholar

42. Aminoff, G. Z. Kristallogr. 1923, 58, 203–219; https://doi.org/10.1524/zkri.1923.58.1.203.Search in Google Scholar

43. Binnewies, M., Glaum, R., Schmidt, P., Schmidt, M. Chemical Vapor Transport Reactions; De Gruyter: Berlin, Boston, 2012.10.1515/9783110254655Search in Google Scholar

44. Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F., Sheldrick, G. M. J. Appl. Crystallogr. 2014, 47, 462–466. https://doi.org/10.1107/S1600576713027659.Search in Google Scholar PubMed PubMed Central

45. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/S0108767307043930.Search in Google Scholar PubMed

46. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838. https://doi.org/10.1107/S0021889899006020.Search in Google Scholar

47. Masse, R., Guitel, J. C., Perret, R. Bull. Soc. Fr. Mineral. Crystallogr. 1973, 96, 346–349; https://doi.org/10.3406/bulmi.1973.6846.Search in Google Scholar

48. Brandenburg, K. Diamond, Crystal and Molecular Structure Visualization, Crystal Impact – K; Brandenburg & H. Putz GbR: Bonn (Germany), 2017. https://www.crystalimpact.de/diamond.Search in Google Scholar

49. Leclaire, A., Borel, M.-M., Grandin, A., Raveau, B. Acta Crystallogr. 1989, C45, 699–701. https://doi.org/10.1107/S0108270188013708.Search in Google Scholar

50. Norberg, S. T., Svensson, G., Albertsson, J. Acta Crystallogr. 2001, C57, 225–227; https://doi.org/10.1107/S0108270100018709.Search in Google Scholar

51. Hatscher, S., Schilder, H., Lueken, H., Urland, W. Pure Appl. Chem. 2005, 77, 497–511; https://doi.org/10.1351/pac200577020497.Search in Google Scholar

52. Gunßer, W., Röhl, B. R., Schütze, A., Gmelin, E., Wiedenmann, A. Ber. Bunsen-Ges. 1992, 96, 1698–1700. https://doi.org/10.1002/bbpc.19920961132.Search in Google Scholar

53. Glaum, R., Hitchman, M. A. Aust. J. Chem. 1996, 49, 1221–1228. https://doi.org/10.1071/CH9961221.Search in Google Scholar

54. Goodenough, J. B., Stickler, J. J. Phys. Rev. 1967, 164, 768–778. https://doi.org/10.1103/PhysRev.164.768.Search in Google Scholar

55. Taran, M. N. Phys. Chem. Miner. 2019, 46, 839–843. https://doi.org/10.1007/s00269-019-01044-y.Search in Google Scholar

56. Burns, R. G. Annu. Rev. Earth Planet. Sci. 1981, 9, 345–383. https://doi.org/10.1146/annurev.ea.09.050181.002021.Search in Google Scholar

57. Taran, M. N., Langer, K. Neues Jahrb. Miner. 1998, 172, 325–346; https://doi.org/10.1127/njma/172/1998/325.Search in Google Scholar

58. Robin, M. B., Day, P. Mixed valence chemistry: a survey and classification. In Advances in Inorganic Chemistry and Radiochemistry; Emeleus, H. J., Sharpe, A. G., Eds.; Academic Press: New York, Vol. 10, 1968; pp. 247–422.10.1016/S0065-2792(08)60179-XSearch in Google Scholar

59. Rice, C. E., Robinson, W. R. Acta Crystallogr. 1977, B33, 1342–1348; https://doi.org/10.1107/S0567740877006062.Search in Google Scholar

60. Rice, C. E., Robinson, W. R. J. Solid State Chem. 1977, 21, 145–154; https://doi.org/10.1016/0022-4596(77)90154-2.Search in Google Scholar

61. Wechsler, B. A., Prewitt, C. T. Amer. Miner. 1984, 69, 176–185.Search in Google Scholar

62. Blake, R. L., Hessevick, R. E., Zoltai, T., Finger, L. W. T. Amer. Miner. 1966, 51, 123–129.Search in Google Scholar

63. Reinauer, F., Glaum, R. Acta Crystallogr. 1998, B54, 722–731. https://doi.org/10.1107/S0108768198003590.Search in Google Scholar

64. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767. https://doi.org/10.1107/S0567739476001551.Search in Google Scholar

65. Chang, C. F., Koethe, T. C., Hu, Z., Weinen, J., Agrestini, S., Zhao, L., Gegner, J., Ott, H., Panaccione, G., Wu, H., Haverkort, M. W., Roth, H., Komarek, A. C., Offi, F., Monaco, G., Liao, Y.-F., Tsuei, K.-D., Lin, H.-J., Chen, C. T., Tanaka, A., Tjeng, L. H. Phys. Rev. X 2018, 8, 021004 (9 pages); https://doi.org/10.1103/PhysRevX.8.021004.Search in Google Scholar

66. Bärnighausen, H. MATCH 1980, 9, 139–175. Online available: https://match.pmf.kg.ac.rs/electronic_versions/Match09/match9_139-175.pdf.Search in Google Scholar

67. Müller, U. Symmetriebeziehungen zwischen Kristallstrukturen: Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Springer Spektrum: Berlin, 2023.10.1007/978-3-662-67166-5Search in Google Scholar

68. Winkler, A., Thilo, E. Z. Anorg. Allg. Chem. 1966, 346, 92–112. https://doi.org/10.1002/zaac.19663460110.Search in Google Scholar

69. Glaum, R., Gruehn, R. Z. Kristallogr. 1992, 198, 41–47. https://doi.org/10.1524/zkri.1992.198.1-2.41.Search in Google Scholar

70. Poojary, D. M., Borade, R. B., Campbell, F. L.III, Clearfield, A. J. Solid State Chem. 1994, 112, 106–112. https://doi.org/10.1006/jssc.1994.1273.Search in Google Scholar

71. Glaum, R., Gruehn, R. . Z. Anorg. Allg. Chem. 1990, 580, 78–94. https://doi.org/10.1002/zaac.19905800110.Search in Google Scholar

72. Schöneborn, M., Glaum, R., Reinauer, F. J. Solid State Chem. 2008, 181, 1367–1376. https://doi.org/10.1016/j.jssc.2008.02.039.Search in Google Scholar

73. Herbst-Irmer, R. Z. Kristallogr. 2016, 231, 573–581. https://doi.org/10.1515/zkri-2016-1947.Search in Google Scholar

74. Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T., Sawaya, M. Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL, IUCr Texts on Crystallography, Oxford University Press: Oxford, 2006; chapter 7, pp. 106–149.10.1093/acprof:oso/9780198570769.003.0007Search in Google Scholar

75. Hundt, R. KPlot, A Program for Plotting and Investigating Crystal Structures; University of Bonn: Bonn (Germany), 1979. https://www.crystalimpact.com/download/kplot.htm.Search in Google Scholar

76. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13. https://doi.org/10.1107/S0021889802022112.Search in Google Scholar

77. Kubelka, P., Munk, F. Z. tech. Physik 1931, 12, 593–601.Search in Google Scholar

78. Kortüm, G. Reflectance spectroscopy: Principles, Methods, Applications; Springer: Berlin, 1969.10.1007/978-3-642-88071-1Search in Google Scholar

79. Bain, G. A., Berry, J. F. J. Chem. Ed. 2008, 85, 532–536; https://doi.org/10.1021/ed085p532.Search in Google Scholar

80. Klemm, W. Magnetochemie; Akademischer Verlagsgesellschaft: Leipzig, 1936.Search in Google Scholar

81. Pople, J. A. J. Chem. Phys. 1962, 37, 53–59. https://doi.org/10.1063/1.1732974.Search in Google Scholar

82. Pascal, P. Ann. Chim. Phys. 1910, 19, 5.Search in Google Scholar

83. Pascal, P. Ann. Chim. Phys. 1912, 25, 289.Search in Google Scholar

84. Pascal, P. Ann. Chim. Phys. 2013, 29, 218.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0099).


Received: 2023-11-13
Accepted: 2023-11-30
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0099/html
Scroll to top button