Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2024

Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C

  • Johanna Uhlendorf EMAIL logo and Harald Schmidt

Abstract

The monoclinic β-polymorph of gallium oxide is a semiconductor with an ultra-wide bandgap. It is becoming increasingly significant for various technological applications. We have investigated the tracer self-diffusion of oxygen in β-Ga2O3 single crystals as a function of the oxygen partial pressure (2, 20 and 200 mbar) at a temperature of 1375 °C. Isotopically enriched 18O2 gas was used as a tracer source and secondary ion mass spectrometry to analyze depth profiles. We observed that, with decreasing oxygen partial pressure, the diffusivities at a given temperature increase significantly. We suggest that this behaviour can be explained by a change in the diffusion mechanism from oxygen interstitials to oxygen vacancies.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Johanna Uhlendorf, Institut für Metallurgie, Technische Universität Clausthal, AG Festkörperkinetik, 38678 Clausthal-Zellerfeld, Germany, E-mail:

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM – 15619/35-1. This financial support is gratefully acknowledged.

  1. Research ethics: Noted and followed.

  2. Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM – 15619/35-1.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Roy, R., Hill, V. G., Osborn, E. F. J. Am. Chem. Soc. 1952, 74, 719–722; https://doi.org/10.1021/ja01123a039.Search in Google Scholar

2. Higashiwaki, M., Fujita, S. Gallium Oxide; Springer International Publishing: Cham (Switzerland), 2020.10.1007/978-3-030-37153-1Search in Google Scholar

3. Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., Galazka, Z., Uecker, R., Irmscher, K., Fornari, R., Michling, M., Schmeißer, D., Weber, J. R., Varley, J. B., van de Walle, C. G. New J. Phys. 2011, 13, 085014; https://doi.org/10.1088/1367-2630/13/8/085014.Search in Google Scholar

4. Pearton, S. J., Ren, F., Tadjer, M., Kim, J. J. Appl. Phys. 2018, 124, 220901; https://doi.org/10.1063/1.5062841.Search in Google Scholar

5. Pearton, S. J., Yang, J., Cary, P. H., Ren, F., Kim, J., Tadjer, M. J., Mastro, M. A. Appl. Phys. Rev. 2018, 5, 011301; https://doi.org/10.1063/1.5006941.Search in Google Scholar

6. Tadjer, M. J., Lyons, J. L., Nepal, N., Freitas, J. A.Jr, Koehler, A. D., Foster, G. M. ECS J. Solid State Sci. Technol. 2019, 8, Q3187–Q3194; https://doi.org/10.1149/2.0341907jss.Search in Google Scholar

7. Pearton, S., Mastro, M., Ren, F. Gallium Oxide - Technology, Devices and Applications; Elsevier: San Diego, 2018.Search in Google Scholar

8. Huan, Y.-W., Sun, S.-M., Gu, C.-J., Liu, W.-J., Ding, S.-J., Yu, H.-Y., Xia, C.-T., Zhang, D. W. Nanoscale Res. Lett. 2018, 13, 1–10.10.1186/s11671-018-2667-2Search in Google Scholar PubMed PubMed Central

9. Galazka, Z. Semicond. Sci. Technol. 2018, 33, 1–108.10.1088/1361-6641/aadf78Search in Google Scholar

10. Stepanov, S. I., Nikolaev, V. I., Bougrov, V. E., Romanov, A. E. Red. Adv. Mater. Sci. 2014, 44, 63–86.Search in Google Scholar

11. Rogers, D. J., Look, D. C., Teherani, F. H. Oxide-based Materials and Devices IX; SPIE: Bellingham, Washington, 2018.Search in Google Scholar

12. Fleischer, M., Meixner, H. Sens. Actuators, B 1991, 4, 437–441; https://doi.org/10.1016/0925-4005(91)80148-d.Search in Google Scholar

13. Ogita, M., Higo, K., Nakanishi, Y., Hatanaka, Y. Appl. Surf. Sci. 2001, 175, 721–725; https://doi.org/10.1016/s0169-4332(01)00080-0.Search in Google Scholar

14. Zacherle, T., Schmidt, P. C., Martin, M. Phys. Rev. B 2013, 87, 235206; https://doi.org/10.1103/physrevb.87.235206.Search in Google Scholar

15. Varley, J. B., Weber, J. R., Janotti, A., van de Walle, C. G. Appl. Phys. Lett. 2010, 97, 142106; https://doi.org/10.1063/1.3499306.Search in Google Scholar

16. Víllora, E. G., Shimamura, K., Yoshikawa, Y., Ujiie, T., Aoki, K. Appl. Phys. Lett. 2008, 92, 202120; https://doi.org/10.1063/1.2919728.Search in Google Scholar

17. Kyrtsos, A., Matsubara, M., Bellotti, E. Phys. Rev. B 2017, 95, 245202; https://doi.org/10.1103/physrevb.95.245202.Search in Google Scholar

18. Blanco, M. A., Sahariah, M. B., Jiang, H., Costales, A., Pandey, R. Phys. Rev. B 2005, 72, 184103; https://doi.org/10.1103/physrevb.72.184103.Search in Google Scholar

19. Peelaers, H., Lyons, J. L., Varley, J. B., van de Walle, C. G. APL Mater. 2019, 7, 022519; https://doi.org/10.1063/1.5063807.Search in Google Scholar

20. Galazka, Z., Uecker, R., Klimm, D., Irmscher, K., Naumann, M., Pietsch, M., Kwasniewski, A., Bertram, R., Ganschow, S., Bickermann, M. ECS J. Solid State Sci. Technol. 2017, 6, Q3007–Q3011; https://doi.org/10.1149/2.0021702jss.Search in Google Scholar

21. Uhlendorf, J., Galazka, Z., Schmidt, H. Appl. Phys. Lett. 2021, 119, 242106; https://doi.org/10.1063/5.0071729.Search in Google Scholar

22. Uhlendorf, J., Schmidt, H. Phys. Rev. Mater. 2023, 7, 093402.10.1088/1742-5468/acf8baSearch in Google Scholar

23. Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y., Masui, T., Yamakoshi, S. Jpn. J. Appl. Phys. 2016, 55, 1202A2; https://doi.org/10.7567/jjap.55.1202a2.Search in Google Scholar

24. Galazka, Z., Irmscher, K., Schewski, R., Hanke, I. M., Pietsch, M., Ganschow, S., Klimm, D., Dittmar, A., Fiedler, A., Schroeder, T., Bickermann, M. J. Cryst. Growth 2020, 529, 1–8.10.1016/j.jcrysgro.2019.125297Search in Google Scholar

25. Mehrer, H. Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer: Berlin, Heidelberg, 2007.10.1007/978-3-540-71488-0Search in Google Scholar

Received: 2023-10-25
Accepted: 2023-11-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0091/html
Scroll to top button