Skip to main content
Log in

Investigating the adsorption behavior of cyano radical on zigzag aluminum nitride and aluminum phosphide nanotubes: A DFT study

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were utilized to evaluate the adsorption of cyano radical (.C≡N) on H-capped (5, 0), (6, 0), and (8, 0) zigzag aluminum nitride nanotubes (AlNNTs) and the results were compared to the adsorption on a (6, 0) zigzag aluminum phosphide nanotube (AlPNT). The most stable configuration (C-side) involves the attachment of CN to the outer surfaces of pure AlPNT and AlNNT via a covalent bond. The adsorption energy of.CN on the (5, 0) AlNNT surface, with a tube diameter of 4.82 Å and length of 16.4 Å, was found to be -253.17 kJ mol−1 through N-side (IV) and -259.12 kJ mol−1 through C-side (V), indicating a chemisorption process. The adsorption of.CN through the C-side on (5, 0) AlNNT is more stable than through the C-side on (6, 0) and (8, 0) AlNNTs. Natural bond orbital (NBO) revealed that in these configurations, there was a charge about 0.254 (C-side) and 0.357 (N-side) |e| transferred from the (5, 0) AlNNT to the.CN as an electron acceptor, demonstrated by a strong orbital hybridization during the adsorption process. The decrease in softness, energy gap, and electrophilicity of.CN-adsorbed AlNNT can indicate a shift toward enhanced stability and reduced reactivity. Increasing the diameter and length of AlNNTs leads to significant alterations in the structural and electronic features of the nanotubes, as suggested by our findings. The analysis of the total density of states (DOS) illustrated the interaction between.CN and the nanotube surfaces resulted in alterations in the electronic structure of the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Li, Y., Hu, J.M., Zang, Y.F., Li, J.Q.: Coadsorption of CN and O on Cu (1 0 0) surface: a density functional study. Appl. Surf. Sci. 252, 5636 (2006)

    Article  CAS  Google Scholar 

  2. Vessally, E., Behmagham, F., Massuomi, B., Hosseinian, A., Nejati, K.: Selective detection of cyanogen halides by BN nanocluster: a DFT study. J. Mol. Model. 23, 138 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ijima, S.: Nature 56, 354 (1991)

    Google Scholar 

  4. Baei, M.T., Ghasemi, A.S., Tazikeh Lemeski, E., Soltani, A., Gholami, N.: BN nanotube serving as a gas chemical sensor for N2O by parallel electric field. J. Clust. Sci. 27, 1081–1096 (2016)

    Article  CAS  Google Scholar 

  5. Soltani, A., Baei, M.T., Ghasemi, A.S., Tazikeh Lemeski, E., Hosseni Amirabadi, K.: Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattice. Microstruct. 75, 564–575 (2014)

    Article  CAS  Google Scholar 

  6. Ahmadi Peyghan, A., Soltani, A., Pahlevani, A.A., Kanani, Y., Khajeh, S.: A first-principles study of the adsorption behavior of CO on Al- and Ga-doped single-walled BN nanotubes. Appl. Surf. Sci. 270, 25–32 (2013)

    Article  Google Scholar 

  7. Yuan, J., Liew, K.M.: Structural stability of a coaxial carbon nanotube inside a boron–nitride nanotube. Carbon 49, 677–683 (2011)

    Article  CAS  Google Scholar 

  8. Xie, Y., Huo, Y.-P., Zhang, J.-M.: First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl. Surf. Sci. 258, 6391–6397 (2012)

    Article  CAS  Google Scholar 

  9. Mirzaei, M., Mirzaei, M.: An electronic structure study of O-terminated zigzag BN nanotubes: density functional calculations of the quadrupole coupling constants. Solid State Commun. 150, 1238 (2010)

    Article  CAS  Google Scholar 

  10. Ahmadi Peyghan, A., Omidvar, A., Hadipour, N.L., Bagheri, Z., Kamfiroozi, M.: Can aluminum nitride nanotubes detect the toxic NH3 molecules? Physica E 44, 1357 (2012)

    Article  Google Scholar 

  11. Saleh, R.O., OlegovichBokov, D., Fenjan, M.N., Kamal Abdelbasset, W., Altimari, U.S., TurkiJalil, A., Thangavelu, L., Suksatan, W., Cao, Y.: Application of aluminum nitride nanotubes as a promising nanocarriers for anticancer drug 5-aminosalicylic acid in drug delivery system. J. Mol. Liq. 352, 118676 (2022)

    Article  Google Scholar 

  12. Menazea, A.A., Awwad, N.S., Ibrahium, H.A., Ebaid, G., Elhosiny Ali, H.: Selective detection of sulfur trioxide in the presence of environmental gases by AlN nanotube. J. Sulfur Chem. 43, 290–303 (2022)

    Article  CAS  Google Scholar 

  13. Soltani, A., RamezaniTaghartapeh, M., Tazikeh Lemeski, E., Abroudi, M., Mighani, H.: A theoretical study of the adsorption behavior of N2O on single-walled AlN and AlP nanotubes. Superlattice. Microstruct. 58, 178–190 (2013)

    Article  CAS  Google Scholar 

  14. Beheshtian, J., Baei, M.T., Peyghan, A.A.: Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surf. Sci. 606, 981–985 (2012)

    Article  CAS  Google Scholar 

  15. Ahmadi, A., Hadipour, N.L., Kamfiroozi, M., Bagheri, Z.: Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens. Actuators B: Chem. 161, 1025 (2012)

    Article  CAS  Google Scholar 

  16. Ahmadi Peyghan, A., Beheshtian, J., Hadipour, N.L.: Interaction of NH3 with aluminum nitride nanotube: Electrostatic vs. covalent. Physica E 43, 1717 (2011)

    Article  Google Scholar 

  17. Baei, M.T., Ahmadi Peyghan, A., Ahmadi Peyghan, A., Moghimi, M.: Theoretical study of cyano radical adsorption on (6, 0) zigzag single-walled carbon nanotube. Monatsh. Chem. – Chem. Mon. 143, 1463–1470 (2012)

    Article  CAS  Google Scholar 

  18. Soltani, A., VarastehMoradi, A., Bahari, M., Masoodi, A., Shojaee, S.: Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6,0) BN nanotubes. Physica B 430, 20–26 (2013)

    Article  CAS  Google Scholar 

  19. Han, Y., Liu, Z., Zhang, Q., Guo, X., Jiao, T.: Electrically enhanced adsorption efficiency of aluminum nitride nanotube for sulfate ion removal from water. Sci. Total Environ. 916, 170199 (2024)

    Article  CAS  PubMed  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheese-man, J.R., Zakrzewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head- Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 98. Gaussian Inc., Pittsburgh (1998)

    Google Scholar 

  21. Soltani, A., Ahmadian, N., Kanani, Y., Dehnokhalajid, A., Mighani, H.: Ab initio investigation of the SCN- chemisorption of single-walled boron nitride nanotubes. Appl. Surf. Sci. 258, 9536–9543 (2012)

    Article  CAS  Google Scholar 

  22. Parr, R.G., Yang, W.: Density functional theory of atoms and molecules. Oxford University Press, New York (1989)

    Google Scholar 

  23. Saikia, N., Deka, R.C.: Density functional calculations on adsorption of 2-methylheptylisonicotinate antitubercular drug onto functionalized carbon nanotube. Comput. Theor. Chem. 964, 257 (2011)

    Article  CAS  Google Scholar 

  24. Baei, M.T., RamezaniTaghartapeh, M., Tazikeh Lemeski, E., Soltani, A.: Computational study of OCN- chemisorption over AlN nanostructures. Superlattice. Microstruct. 72, 370–382 (2014)

    Article  CAS  Google Scholar 

  25. Al-Zuhairy, S.A.S., Kadhim, M.M., Hatem Shadhar, M., Jaber, N.A., AbdulkareemAlmashhadani, H., Mahdi Rheima, A., Mousa, M.N., Cao, Y.: Study to molecular insight into the role of aluminum nitride nanotubes on to deliver of 5-Fluorouracil (5FU) drug in smart drug delivery. Inorg. Chem. Commun. 142, 109617 (2022)

    Article  CAS  Google Scholar 

  26. Akamaru, H., Onodera, A., Endo, T., Mishima, O.: Pressure dependence of the optical-absorption edge of AlN and graphite-type BN. J. Phys. Chem. Solids 63, 887–894 (2002)

    Article  CAS  Google Scholar 

  27. Abinaya, V., John Thiruvadigal, D., Akash, R., SakthiBalaji, A., Hariharan, R.M., Sneha, J., Adharsh, U., Janani Sivasankar, K.: Chemical modification of Aluminum Nitride Nanotubes (AlNNT) using -OH, C=O, R-SH functional groups: first principle’s study. Surf. Interfaces 41, 103262 (2023)

    Article  CAS  Google Scholar 

  28. Chen, K., HafdhiAbdtawfeeq, T., Kadhim, I.K., Abed Jawad, M., JumaahHammad, M., Mihdi Mohammed, N., Riyahi, Y., Hadrawi, S.K., Kaur, J., Soltani, A.: Magnesium oxide nanotube as novel strategies to enhance the anticancer activity of 5-Fluorouracil. J. Mol. Liq. 384, 122214 (2023)

    Article  CAS  Google Scholar 

  29. Baei, M.T., Ghasemi, A.S., Tazikeh-Lemeski, E., Soltani, A., Ashrafi, F.: Effect of adsorption sensitivity of armchair single-walled BN nanotube toward thiocyanate anion: a systematic evaluation of length and diameter effects. Surf. Interfaces 21, 100693 (2020)

    Article  CAS  Google Scholar 

  30. Soltani, A., Sousaraei, A., Mirarab, M., Balakheyli, H.: Interaction of CNCl molecule and single-walled AlN nanotubes using DFT and TD-DFT calculations. J. Saudi Chem. Soc. 21, 270–276 (2017)

    Article  CAS  Google Scholar 

  31. Patel, S., Patel, P., Chodvadiya, D., Som, N.N., Jha, P.K.: Adsorption performance of C12, B6N6 and Al6N6 nanoclusters towards hazardous gas molecules: a DFT investigation for gas sensing and removal application. J. Mol. Liq. 352, 118702 (2022)

    Article  CAS  Google Scholar 

  32. Zhiani, R.: Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study. Appl. Surf. Sci. 409, 35–44 (2017)

    Article  CAS  Google Scholar 

  33. Sun, N., Javed Ansari, M., Ng Kay Lup, A., Javan, M., Soltani, A., Khandoozi, S.R., Arian Nia, A., Tavassoli, S., Rahman, M.L., Sarjadi, M.S., Sarkar, S.M., Su, C.-H., Chinh Nguyen, H.: Improved anti-inflammatory and anticancer properties of celecoxib loaded zinc oxide and magnesium oxide nanoclusters: a molecular docking and density functional theory simulation. Arab. J. Chem. 15, 103568 (2022)

    Article  CAS  Google Scholar 

  34. Cao, Y., Khan, A., Mirzaei, H., Khandoozi, S.R., Javan, M., Ng Kay Lup, A., Norouzi, A., Tazikeh Lemeski, E., Pishnamazi, M., Soltani, A., Albadarin, A.B.: Investigations of adsorption behavior and anti-cancer activity of curcumin on pure and platinum functionalized B12N12 nanocages. J. Mol. Liq. 334, 116516 (2021)

    Article  CAS  Google Scholar 

  35. Wang, N., Li, X., Lian, X., Zhuang, Q., Wang, J., Li, J., Qian, H., Miao, K., Wang, Y., Luo, X., Feng, G.: Acetate ions facilitated immobilization of highly dispersed transition metal oxide nanoclusters in mesoporous silica. Inorg. Chem. 63, 4393–4403 (2024)

    Article  CAS  PubMed  Google Scholar 

  36. Yang, S., Huang, Z., Hu, Q., Zhang, Y., Wang, F., Wang, H., Shu, Y.: Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity. ACS Appl. Electron. Mater. 4, 4659–4667 (2022)

    Article  CAS  Google Scholar 

  37. Muz, I., Kurban, H., Kurban, M.: A DFT study on stability and electronic structure of AlN nanotubes. Mater. Today Commun. 26, 102118 (2021)

    Article  CAS  Google Scholar 

  38. Wu, J.: J. Appl. Phys. 5, 106 (2009)

    Google Scholar 

  39. Cui, Y., Su, W., Xing, Y., Hao, L., Sun, Y., Cai, Y.: Experimental and simulation evaluation of CO2/CO separation under different component ratios in blast furnace gas on zeolites. Chem. Eng. J. 472, 144579 (2023)

    Article  CAS  Google Scholar 

  40. Wang, J., Wang, P., Chen, W., Wan, F., Lu, Y., Tang, Z., Dong, A., Lei, Z., Zhang, Z.: Highly sensitive multi-pass cavity enhanced Raman spectroscopy with novel polarization filtering for quantitative measurement of SF6 decomposed components in gas-insulated power equipment. Sens. Actuators B Chem. 380, 133350 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2024R620), King Saud University, Riyadh, Saudi Arabia.

Funding

The research was performed with the Researchers Supporting Project number (RSPD2024R620), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AUTHORSHIP STATEMENT

Manuscript title: Investigating the adsorption behavior of cyano radical on zigzag aluminum nitride and aluminum phosphide nanotubes: A DFT study.

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in Adsorption.

Author contribution:

Adel Alhowyan: Writing-review and editing, Investigation, Resources. Ahmad J. Obaidullah: Supervision, Conceptualization, writing-original draft preparation, formal analysis, Methodology.

Corresponding author

Correspondence to Ahmad J. Obaidullah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhowyan, A., Obaidullah, A.J. Investigating the adsorption behavior of cyano radical on zigzag aluminum nitride and aluminum phosphide nanotubes: A DFT study. Adsorption (2024). https://doi.org/10.1007/s10450-024-00448-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00448-9

Keywords

Navigation