Skip to main content
Log in

Surface-enhanced Raman effect on MoS2–WS2 composite structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The extensive application of SERS requires a reduction in complexity and difficulty in substrate preparation. Here, the study proposes a simple yet effective technique for the synthesis of few-layered MoS2–WS2 composite structures and highlights the potential of these nano-composites as low-cost SERS substrates. A highly fluorescent dye, Rhodamine 6G (R6G) has been employed as a probe. A better enhancement ability was observed for the MoS2–WS2 nano-composite structures and a series of R6G signature peaks can be detected even down to 10–7 M concentration. The presence of surface roughness due to the formation of multiple inter- and intra-flake heterojunctions may provide a larger contact area between the substrate and the probe. Hence, the improved enhancement is probably due to the higher adsorption of the R6G molecules on the nano-composites and the effective charge transfer between them. Additionally, the detection ability of the MoS2–WS2 composite structures was sustained over a long period after storing the same at room temperature. The study provides a new incentive for metal-free low-cost SERS sensing by engaging 2D materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data analyzed are included in this article.

References

  1. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008). https://doi.org/10.1146/annurev.anchem.1.031207.112814

    Article  Google Scholar 

  2. S.K. Baik, Y.J. Cho, Y.R. Lim, H.S. Im, D.M. Jang, Y. Myung, J. Park, H.S. Kang, Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon-carbon core-shell nanowires. ACS Nano 6, 2459–2470 (2012). https://doi.org/10.1021/nn204797b

    Article  Google Scholar 

  3. D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, Y. Li, Black Gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew. Chem. Int. Ed. 54, 9596–9600 (2015)

    Article  Google Scholar 

  4. A. Otto, The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–509 (2005)

    Article  ADS  Google Scholar 

  5. B.N.J. Persson, K. Zhao, Z.Y. Zhang, Chemical contribution to surface-enhanced Raman scattering. Phys. Rev. Lett. 96, 207401 (2006)

    Article  ADS  Google Scholar 

  6. X. Ling, L.G. Moura, M.A. Pimenta, J. Zhang, Charge-transfer mechanism in graphene-enhanced Raman scattering. J. Phys. Chem. C 116(47), 25112–25118 (2012). https://doi.org/10.1021/jp3088447

    Article  Google Scholar 

  7. X. Ling, J. Zhang, First-layer effect in graphene-enhanced Raman scattering. Small 6(18), 2020–2025 (2010). https://doi.org/10.1002/smll.201000918

    Article  Google Scholar 

  8. X. Ling, L.M. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, Z. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10(2), 553–561 (2010). https://doi.org/10.1021/nl903414x

    Article  ADS  Google Scholar 

  9. C. Muehlethaler, C.R. Considine, V. Menon, W.-C. Lin, Y.-H. Lee, J.R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics 3, 1164–1169 (2016)

    Article  Google Scholar 

  10. L. Meng, S. Hua, C. Xu, X. Wang, H. Li, X. Yan, Surface enhanced Raman effect on CVD growth of WS2 film. Chemical Physics Lett. 707, 71–74 (2018)

    Article  ADS  Google Scholar 

  11. Y.Y. Xua, C. Yanga, S.Z. Jianga, B.Y. Mana, M. Liua, C.S. Chena, C. Zhanga, Z.C. Suna, H.W. Qiua, H.S. Lic, D.J. Fengd, J.X. Zhang, Layer-controlled large area MoS2 layers grown on mica substrate for surface-enhanced Raman scattering. Appl. Surf. Sci. 357, 1708–1713 (2015)

    Article  ADS  Google Scholar 

  12. B.P. Majee, S. Mishra, R.K. Pandey, R. Prakash, A.K. Mishra, Multifunctional few-layer MoS2 for photodetection and surface-enhanced Raman spectroscopy application with ultrasensitive and repeatable detectability. J. Phys. Chem. C 123, 18071–18078 (2019)

    Article  Google Scholar 

  13. D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, X. Wang, A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system. J. Mater. Chem. C 6, 12547 (2018)

    Article  Google Scholar 

  14. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, L. Wang, Creating sers hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces 6, 18735–18741 (2014)

    Article  Google Scholar 

  15. D. Majumdar, S. Jana, S.K. Ray, Gold nanoparticles decorated 2D-WSe2 as a SERS substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 278, 121349 (2022)

    Article  Google Scholar 

  16. B.M. Sow, J. Lu, H. Liu, K.E.J. Goh, C.H. Sow, Enriched fluorescence emission from WS2 monoflake empowered by Au nanoexplorers. Adv. Optical Mater. 5, 1700156 (2017)

    Article  Google Scholar 

  17. G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, H. Zhang, Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2, 1817 (2011)

    Article  Google Scholar 

  18. J.P. Lu, J.H. Lu, H.W. Liu, B. Liu, L. Gong, E.S. Tok, K.P. Loh, C.H. Sow, Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 11, 1792–1800 (2015). https://doi.org/10.1002/smll.201402591

    Article  ADS  Google Scholar 

  19. J. Wu, Y. Zhou, W. Nie, P. Chen, One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications. J. Nanopart. Res. 20, 7 (2018). https://doi.org/10.1007/s11051-017-4106-1

    Article  ADS  Google Scholar 

  20. J. Li, W. Zhang, H. Lei, B. Li, Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications. Nano Res. 11(4), 2181–2189 (2018). https://doi.org/10.1007/s12274-017-1836-4

    Article  Google Scholar 

  21. D. Burman, R. Ghosh, S. Santra, P.K. Guha, Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 6, 57424–57433 (2016)

    Article  ADS  Google Scholar 

  22. P.M. Pataniya, C.K. Sumesh, WS2 nanosheet/graphene heterostructures for paper-based flexible photodetectors. ACS Appl. Nano Mater. 3(7), 6935–6944 (2020)

    Article  Google Scholar 

  23. W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, M. Toh, X. Zhang, C. Kloc, P.H. Tan, G. Eda, Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677–9683 (2013)

    Article  ADS  Google Scholar 

  24. J. Zhang, L. Du, S. Feng, R.-W. Zhang, B. Cao, C. Zou, Y. Chen, M. Liao, B. Zhang, S.A. Yang, G. Zhang, T. Yu, Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 10, 4226 (2019). https://doi.org/10.1038/s41467-019-12128-2

    Article  ADS  Google Scholar 

  25. A.M. Michaels, M. Nirmal, L. Brus, Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121(43), 9932–9939 (1999). https://doi.org/10.1021/ja992128q

    Article  Google Scholar 

  26. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102

    Article  Google Scholar 

  27. H. Yang, H. Hu, Z. Ni, C.K. Poh, C. Cong, J. Lin, T. Yu, Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62, 422–429 (2013)

    Article  Google Scholar 

  28. Y. Wang, Z. Ni, H. Hu, Y. Hao, C.P. Wong, T. Yu, J.T.L. Thong, Z.X. Shen, Gold on graphene as a substrate for surface enhanced Raman scattering study. Appl. Phys. Lett. 97, 163111 (2010)

    Article  ADS  Google Scholar 

  29. Y. Wang, Z. Ni, A. Li, Z. Zafar, Y. Zhang, Z. Ni, S. Qu, T. Qiu, T. Yu, Z.X. Shen, Surface enhanced Raman scattering of aged graphene: effects of annealing in vacuum. Appl. Phys. Lett. 99, 233103 (2011)

    Article  ADS  Google Scholar 

  30. P. Hildebrandt, M.J. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935–5944 (1984)

    Article  Google Scholar 

  31. L. Sun, H. Hu, D. Zhan, J. Yan, L. Liu, J.S. Teguh, E.K.L. Yeow, P.S. Lee, Z. Shen, Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 10, 1090–1095 (2014)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Department of Science and Technology, Govt. of India [DST/INSPIRE/04/2016/002377].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dipanwita Majumdar; Methodology: Dipanwita Majumdar; Formal analysis and Investigation: Dipanwita Majumdar; Writing—draft preparation: Dipanwita Majumdar; Funding acquisition: Dipanwita Majumdar; Resources: Dipanwita Majumdar.

Corresponding author

Correspondence to Dipanwita Majumdar.

Ethics declarations

Conflict of interests

There are no conflicts or competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, D. Surface-enhanced Raman effect on MoS2–WS2 composite structures. Appl. Phys. A 130, 289 (2024). https://doi.org/10.1007/s00339-024-07454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07454-2

Keywords

Navigation