Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-03T08:00:04.768Z Has data issue: false hasContentIssue false

A compact UWB MIMO antenna augmented with isolation improvement structures in situ with ground stubs and slots

Published online by Cambridge University Press:  05 April 2024

Jeet Banerjee*
Affiliation:
Department of Electrical & Electronics Engineering, School of Engineering and Technology, Adamas University, Kolkata, West Bengal, India
Abhik Gorai
Affiliation:
School of Electronics Engineering, KIIT Deemed University, Bhubaneswar, India
Rowdra Ghatak
Affiliation:
Microwave and Antenna Research Laboratory, ECE Department, National Institute of Technology Durgapur, Durgapur, West Bengal, India
*
Corresponding author: Jeet Banerjee; Email: its.jeetbanerjee@gmail.com

Abstract

An orthogonally oriented microstrip-fed bi-element ultra-wideband (UWB) diversity antenna possessing a super-wide bandwidth, high isolation, and band rejection attributes is proposed. The intended diversity antenna uses a 2nd-order Cayley fractal tree-shaped neutralization line among a pair of radiating square monopoles along with additional components like extended ground stubs, hybrid Koch fractal parasitic elements, and an L-shaped defected ground structure to attain high isolation of <−20 dB over 3.1–18 GHz. To nullify the intervention from the existent wireless local area network band, a hybrid Koch–Minkowski slot is carved out from the radiators. A minimal inter-element spacing of 8 mm is attained with the suggested layout measuring 28 mm (L) × 42 mm (W) in extent. The numerical as well as experimental investigations of vital diversity attributes like the envelope correlation coefficient, mean effective gain, total active reflection coefficient, and multiplexing efficiency depict high diversity actualization. The consistency amidst the simulation as well as the empirical results recommends the worthiness of the intended antenna for handy UWB and UWB multiple-input multiple-output systems.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Proakis, JG (2008) Digital Communications. New York: McGraw-Hill.Google Scholar
Paulraj, AJ, Gore, DA, Nabar, RU and Bolcskei, H (2004) An overview of MIMO communications – A key to gigabit wireless. Proceedings of the IEEE 92(2), 198218.CrossRefGoogle Scholar
Jensen, MA and Wallace, JW (2004) A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation 52(11), 28102824.CrossRefGoogle Scholar
Sharawi, MS (2017) Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]. IEEE Antennas and Propagation Magazine 59(2), 162170.CrossRefGoogle Scholar
Liu, L, Cheung, SW and Yuk, TI (2013) Compact MIMO antenna for portable devices in UWB applications. IEEE Transactions on Antennas and Propagation 61(8), 42574264.CrossRefGoogle Scholar
Malik, J, Patnaik, A and Machavaram, K (2018) Compact Antennas for High Data Rate Communication: Ultra-Wideband (UWB) and Multiple-Input-Multiple-Output (MIMO) Technology, Vol. 14. India: Springer International Publishing.CrossRefGoogle Scholar
Gorai, A and Ghatak, R (2020) Utilization of Shorted Fractal Resonator topology for high isolation and ELC resonator for band suppression in compact MIMO UWB antenna. International Journal of Electronics and Communications 113, .CrossRefGoogle Scholar
Roshna, TK, Deepak, U, Sajitha, VR, Vasudevan, K and Mohanan, P (2015) A compact UWB MIMO antenna with reflector to enhance isolation. IEEE Transactions on Antennas and Propagation 63(4), 18731877.CrossRefGoogle Scholar
Khan, MS, Capobianco, A-D, Asif, SM, Anagnostou, DE, Shubair, RM and Braaten, BD (2017) A compact CSRR-enabled UWB diversity antenna. IEEE Antennas and Wireless Propagation Letters 16, 808812.CrossRefGoogle Scholar
Ghosh, S, Tran, T-N and Le-Ngoc, T (2014) Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems. IEEE Transactions on Antennas and Propagation 62(8), 39853997.CrossRefGoogle Scholar
Banerjee, J, Karmakar, A, Ghatak, R and Ranjan Poddar, D (2017) Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic. Journal of Electromagnetic Waves and Applications 31(15), 15501565.CrossRefGoogle Scholar
Diallo, A, Luxey, C, Thuc, PL, Staraj, R and Kossiavas, G (2006) Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS 1800 and UMTS bands. IEEE Transactions on Antennas and Propagation 54(11), 30633074.CrossRefGoogle Scholar
Ibrahim, A, Eltokhy, A and Daw, A (2023) Four ports MIMO printed antenna with high isolation for UWB and X-band systems. International Journal of Microwave and Wireless Technologies 15(9), 16011609.CrossRefGoogle Scholar
Dharmarajan, A, Kumar, P and Afullo, TJO (2022) A high gain UWB human face shaped MIMO microstrip printed antenna with high isolation. Multimedia Tools and Applications 81, 3484934862.CrossRefGoogle Scholar
Su, S, Lee, C and Chang, F (2012) Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Transactions on Antennas and Propagation 60(2), 456463.CrossRefGoogle Scholar
See, CH, Abd-Alhameed, RA, Abidin, ZZ, McEwan, NJ and Excell, PS (2012) Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications. IEEE Transactions on Antennas and Propagation 60(4), 20282035.CrossRefGoogle Scholar
Wang, Y and Du, Z (2013) A wideband printed dual-antenna system with a novel neutralization line for mobile terminals. IEEE Antennas and Wireless Propagation Letters 12, 14281431.CrossRefGoogle Scholar
Wang, Y and Du, Z (2014) A wideband printed dual-antenna with three neutralization lines for mobile terminals. IEEE Transactions on Antennas and Propagation 62(3), 14951500.CrossRefGoogle Scholar
Ban, Y, Chen, Z, Kang, K and Li, JL (2014) Decoupled hepta-band antenna array for WWAN/LTE smartphone applications. IEEE Antennas and Wireless Propagation Letters 13, 9991002.Google Scholar
Wang, S and Du, Z (2015) Decoupled dual-antenna system using crossed neutralization lines for LTE/WWAN smartphone applications. IEEE Antennas and Wireless Propagation Letters 14, 523526.CrossRefGoogle Scholar
Cihangir, A, Ferrero, F, Jacquemod, G, Brachat, P and Luxey, C (2014) Neutralized coupling elements for MIMO operation in 4G mobile terminals. IEEE Antennas and Wireless Propagation Letters 13, 141144.CrossRefGoogle Scholar
Liu, Y and Tu, Z (2017) Compact differential band-notched stepped-slot UWB-MIMO antenna with common-mode suppression. IEEE Antennas and Wireless Propagation Letters 16, 593596.CrossRefGoogle Scholar
Sipal, D, Abegaonkar, MP and Koul, SK (2017) Easily extendable compact planar UWB MIMO antenna array. IEEE Antennas and Wireless Propagation Letters 16, 23282331.CrossRefGoogle Scholar
Jehangir, SS and Sharawi, MS (2017) A miniaturized UWB biplanar Yagi-like MIMO antenna system. IEEE Antennas and Wireless Propagation Letters 16, 23202323.CrossRefGoogle Scholar
Lin, G, Sung, C, Chen, J and Houng, M (2017) Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas and Wireless Propagation Letters 16, 222225.CrossRefGoogle Scholar
Zhang, S, Ying, Z, Xiong, J and He, S (2009) Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas and Wireless Propagation Letters 8, 12791282.CrossRefGoogle Scholar
Sohi, AK and Kaur, A (2021) Computational analysis of a dual-port semi-circular patch antenna combined with Koch curve fractals for ultra-wideband systems. Engineering Reports 3, .CrossRefGoogle Scholar
Deng, J-Y, Guo, L-X and Liu, X-L (2016) An ultrawideband MIMO antenna with a high isolation. IEEE Antennas and Wireless Propagation Letters 15, 182185.CrossRefGoogle Scholar
Kang, L, Li, H, Wang, X and Shi, X (2015) Compact offset microstrip-fed MIMO antenna for band-notched UWB applications. IEEE Antennas and Wireless Propagation Letters 14, 17541757.CrossRefGoogle Scholar
Gómez-Villanueva, R and Jardón-Aguilar, H (2019) Compact UWB uniplanar four-port MIMO antenna array with rejecting band. IEEE Antennas and Wireless Propagation Letters 18(12), 25432547.CrossRefGoogle Scholar
Tang, X, Yao, Z, Li, Y, Zong, W, Liu, G and Shan, F (2021) A high performance UWB MIMO antenna with defected ground structure and U-shape branches. International Journal of RF and Microwave Computer-Aided Engineering 31, .CrossRefGoogle Scholar
Tang, Z, Zhan, J, Wu, X, Xi, Z and Wu, S (2020) Simple ultra-wider-bandwidth MIMO antenna integrated by double decoupling branches and square-ring ground structure. Microwave and Optical Technology Letters 62, 12591266.CrossRefGoogle Scholar
Zhao, X, Yeo, SP and Ong, LC (2018) Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes. IEEE Transactions on Antennas and Propagation 66(1), 420425.CrossRefGoogle Scholar
Sohi, AK and Kaur, AA (2020) Complementary Sierpinski gasket fractal antenna array integrated with a complementary Archimedean defected ground structure for portable 4G/5G UWB MIMO communication devices. Microwave and Optical Technology Letters 62, 25952605.CrossRefGoogle Scholar
Agrawall, NP, Kumar, G and Ray, KP (1998) Wide-band planar monopole antennas. IEEE Transactions on Antennas and Propagation 46(2), 294295.CrossRefGoogle Scholar
Thomas, KG and Sreenivasan, MA (2010) Simple ultrawideband planar rectangular printed antenna with band dispensation. IEEE Transactions on Antennas and Propagation 58(1), 2734.CrossRefGoogle Scholar
Banerjee, J, Gorai, A and Ghatak, R (2022) A novel isolation improvement technique using fractal neutralization line with dual band rejection attributes in a compact UWB MIMO antenna. International Journal of Microwave and Wireless Technologies 15, 112.Google Scholar
Gottheim, S, Zhang, H, Govorov, AO and Halas, NJ (2015) Fractal nanoparticle plasmonics: The Cayley tree. ACS Nano 9(3), 32843292.CrossRefGoogle ScholarPubMed
Imran, M, Baig, AQ and Khalid, W (2018) On topological indices of fractal and Cayley tree type dendrimers. Discrete Dynamics in Nature and Society 2018, .CrossRefGoogle Scholar
Banerjee, J, Gorai, A and Ghatak, R (2020) Design and analysis of a compact UWB MIMO antenna incorporating fractal inspired isolation improvement and band rejection structures. AEU-International Journal of Electronics and Communications 122, .Google Scholar
Zheng, Z, Chu, Q and Tu, Z (2009) Compact band-rejected ultrawideband slot antennas inserting with λ/2 and λ/4 resonators. IEEE Transactions on Antennas and Propagation 59(2), 390397.CrossRefGoogle Scholar
Sharawi, MS (2013) Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine 55(5), 218232.CrossRefGoogle Scholar
Gurjar, R, Upadhyay, DK, Kanaujia, BK and Sharma, K (2019) A novel compact self-similar fractal UWB MIMO antenna. International Journal of RF and Microwave Computer-Aided Engineering 29, .CrossRefGoogle Scholar
Chae, SH, Oh, S-K and Park, S-O (2007) Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas and Wireless Propagation Letters 6, 122125.CrossRefGoogle Scholar