Skip to main content
Log in

Transcriptomic Analysis of Cyclamen persicum to Identify Invovled Genes in Triterpene Secondary Metabolites Pathway

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Saponins are considered as a diverse group of natural active compounds, which are widely found in crops. Mevalonate pathway (MVA) is regarded as the main pathway for synthesis of saponins in crops. This study aims to compare transcriptome of the leaf with tuber of crop including tubers and roots. First, more than 166 million reads were generated. The existence of 36,678 unigenes in the two samples out of 48,936 assembled ones showed a significant difference in expression. Finally, 310 and 290 highly up-regulated genes in leaf and tuber were selected for the next analysis. In addition, the expression profiles of 13 key genes in the MVA pathway were compared in RNA sequencing and reverse transcription-quantitative polymerase chain reaction analysis. The results indicated that cyclamen tuber has a higher level of expression of MVA pathway genes. The topological analysis for gene co-expression network involved in triterpenoid synthesis represented that the genes at the beginning of such pathway play a critical role so that the reduction of their expression challenges triterpenoid synthesis severely. The tuber of the cyclamen appears to be the major site of triterpene synthesis, and transfer of excess Isopentenyl pyrophosphate (IPP) from tuber to leaf activates downstream genes in leaf of crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Alkowni R, Jodeh S, Hussein F, Jaradat N (2018) Phytochemical screening and antibacterial activity of Cyclamen persicum Mill tuber extracts. Pak J Pharm Sci 31:187

    CAS  PubMed  Google Scholar 

  • Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  CAS  PubMed  Google Scholar 

  • Çaliş İ, Şatana ME, Yürüker A, Kelican P, Demirdamar R, Alaçam R, Tanker N, Rüegger H, Sticher O (1997) Triterpene saponins from Cyclamen mirabile and their biological activities. J Nat Prod 60:315–318

    Article  PubMed  Google Scholar 

  • de Costa F, Yendo ACA, Fleck JD, Gosmann G, Fett-Neto AG (2013) Accumulation of a bioactive triterpene saponin fraction of Quillaja brasiliensis leaves is associated with abiotic and biotic stresses. Plant Physiol Biochem 66:56–62

    Article  PubMed  Google Scholar 

  • Djami-Tchatchou A, Straker C (2012) The isolation of high quality RNA from the fruit of avocado (Persea americana Mill.). S Afr J Bot 78:44–46

    Article  CAS  Google Scholar 

  • El Hosry L, Di Giorgio C, Birer C, Habib J, Tueni M, Bun S-S, Herbette G, De Meo M, Ollivier E, Elias R (2014) In vitro cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum. Pharm Biol 52:1134–1140

    Article  PubMed  Google Scholar 

  • Elbeaino T, Marais A, Faure C, Trioano E, Candresse T, Parrella G (2018) High-throughput sequencing reveals Cyclamen persicum Mill. as a natural host for Fig mosaic virus. Viruses 10:684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank A, Groll M (2017) The methylerythritol phosphate pathway to isoprenoids. Chem Rev 117:5675–5703

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Tian S, Hou J, Zhang Z, Yang L, Hu T, Li W, Liu Y (2020) RNA-Seq based transcriptome analysis reveals the molecular mechanism of triterpenoid biosynthesis in Glycyrrhiza glabra. Bioorg Med Chem Lett 30:127102

    Article  CAS  PubMed  Google Scholar 

  • George KW, Thompson MG, Kim J, Baidoo EE, Wang G, Benites VT, Petzold CJ, Chan LJG, Yilmaz S, Turhanen P (2018) Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng 47:60–72

    Article  CAS  PubMed  Google Scholar 

  • Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389

    Article  CAS  PubMed  Google Scholar 

  • Hwang H-S, Lee H, Choi YE (2015) Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis. BMC Genomics 16:1–12

    Article  Google Scholar 

  • Japelaghi RH, Haddad R, Garoosi GA (2011) Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol Biotechnol 49:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B (1999) Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10:1859–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalilia WM (2020) Cytotoxic activity of Cyclamen persicum ethanolic extract on MCF-7, PC-3 and LNCaP cancer cell lines. J Nat Sci 10:42–46

    Google Scholar 

  • Kim Y-J, Lee OR, Oh JY, Jang M-G, Yang D-C (2014) Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiol 165:373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, Staines D, Derwent P, Kerhornou A (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database. https://doi.org/10.1093/database/bar030

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao W, Mei Z, Miao L, Liu P, Gao R (2020) Comparative transcriptome analysis of root, stem, and leaf tissues of Entada phaseoloides reveals potential genes involved in triterpenoid saponin biosynthesis. BMC Genomics 21:1–12

    Article  Google Scholar 

  • Lin J-T, Chen S-L, Liu S-C, Yang D-J (2009) Effect of harvest time on saponins in Yam (Dioscorea pseudojaponica Yamamoto). J Food Drug Anal 17:13

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma C-H, Gao Z-J, Zhang J-J, Zhang W, Shao J-H, Hai M-R, Chen J-W, Yang S-C, Zhang G-H (2016) Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis. Front Plant Sci 7:673

    Article  PubMed  PubMed Central  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Mihci-Gaidi G, Pertuit D, Miyamoto T, Mirjolet J-F, Duchamp O, Mitaine-Offer A-C, Lacaille-Dubois M-A (2010) Triterpene saponins from Cyclamen persicum. Nat Prod Commun 5:1934578X1000500707

    Google Scholar 

  • Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz MA, Chen C, Shireen F, Zheng Z, Sohail H, Afzal M, Ali MA, Bie Z, Huang Y (2018) Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen. BMC Genom 19:1–19

    Article  Google Scholar 

  • Netala VR, Ghosh SB, Bobbu P, Anitha D, Tartte V (2015) Triterpenoid saponins: a review on biosynthesis, applications and mechanism of their action. Int J Pharm Pharm Sci 7:24–28

    CAS  Google Scholar 

  • Qing D-J, Lu H-F, Li N, Dong H-T, Dong D-F, Li Y-Z (2009) Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Plant Cell Physiol 50:889–903

    Article  CAS  PubMed  Google Scholar 

  • Razzaque S, Elias SM, Haque T, Biswas S, Jewel GNA, Rahman S, Weng X, Ismail AM, Walia H, Juenger TE (2019) Gene expression analysis associated with salt stress in a reciprocally crossed rice population. Sci Rep 9:8249

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J (2018) Unraveling the transcriptional complexity of compactness in sistan grape cluster. Plant Sci 270:198–208

    Article  CAS  PubMed  Google Scholar 

  • Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J (2020) Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development. Genomics 112:820–830

    Article  CAS  PubMed  Google Scholar 

  • Sparg S, Light M, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genom 11(262):1–12

    Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P (2016) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucl Acids Re. https://doi.org/10.1093/nar/gkw937

    Article  Google Scholar 

  • Takase S, Kera K, Hirao Y, Hosouchi T, Kotake Y, Nagashima Y, Mannen K, Suzuki H, Kushiro T (2019) Identification of triterpene biosynthetic genes from Momordica charantia using RNA-seq analysis. Biosci Biotechnol Biochem 83:251–261

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, Yang Y, Fu W, Qiu D (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genom 12:1–13

    Article  Google Scholar 

  • Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucl Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li C, Zhou C, Li J, Zhang Y (2017) Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata. Plant J 90:535–546

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Quan S, Xiao H (2019) Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresour Bioprocess 6:1–13

    Article  Google Scholar 

  • Xing J, Pan D, Wang L, Tan F, Chen W (2019) Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress. Turk J Biol 43:314–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AA, AM and MS conceived the idea of this Focus paper. AA and AM conceived and designed this project. ZH performed the experimental steps. AM and JZ analyzed the data. MS provide suggestions for modification. ZH and AM wrote the paper. AA and MS revised this paper. All authors read and approved this manuscript.

Corresponding authors

Correspondence to Mahmood Solouki or Abbasali Emamjomeh.

Ethics declarations

Competing Interests

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 6163.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmati, Z., Solouki, M., Emamjomeh, A. et al. Transcriptomic Analysis of Cyclamen persicum to Identify Invovled Genes in Triterpene Secondary Metabolites Pathway. Biochem Genet (2024). https://doi.org/10.1007/s10528-024-10745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-024-10745-1

Keywords

Navigation