Skip to main content

Advertisement

Log in

Electrospun polyacrylonitrile-based nanofibrous membrane for various biomedical applications

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This is a state-of-the-art overview of the critical features, varieties, and uses of nanocomposite fibres based on polyacrylonitrile. Polyacrylonitrile (PAN) is an economically important acrylic polymer with superior chemical, thermal, mechanical, and electrical properties. Membranes utilized in the biomedical fields can be used as implantable materials and bio-separative materials, with a role in regenerative and purification techniques. Out of all the techniques, electrospinning is given preference over other scaffold preparation methods because it can create 3D nanofiber structures. Electrospun nanofibers also have unique qualities, such as a high surface area-to-volume ratio, porosity, stability, permeability, and morphology that resembles an extracellular matrix. The introduction of nanofillers (carbon nanotubes, graphene oxides), and various nanocomposites into the electrospun PAN fibres. The nitrile groups' interfacial bonding with nanofillers has enhanced the properties of PAN nanofibers. The chemical structure, superhydrophobicity, superoleophobicity, porosity, and wettability of nanofibers have developed a variety of advantageous nanocomposites for fibre applications. The primary goal of the review is to update on the recent research PAN with various polymer blends and nanocomposites for biomedical applications. Furthermore, the implanted materials' biological treatments and therapeutic modalities and their advantages and disadvantages and developing processes are reviewed. Therefore, this review aims to present an in-depth investigation of PAN, its nanofiber composites, and their related features that make them appropriate for bioactive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meinig RP (2010) Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop Clin North Am 41:39–47

    Article  PubMed  Google Scholar 

  2. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1:161–176. https://doi.org/10.1016/j.bsbt.2015.08.002

    Article  Google Scholar 

  4. Guo Z, Poot AA, Grijpma DW (2021) Advanced polymer-based composites and structures for biomedical applications. Eur Polym J 149. https://doi.org/10.1016/j.eurpolymj.2021.110388

  5. Cui Z, Yang B, Li RK (2016) Application of Biomaterials in Cardiac Repair and Regeneration. Engineering 2:141–148. https://doi.org/10.1016/J.ENG.2016.01.028

    Article  CAS  Google Scholar 

  6. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  7. Daniels AU, Chang MK, Andriano KP, Heller J (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78. https://doi.org/10.1002/jab.770010109

    Article  CAS  PubMed  Google Scholar 

  8. Senthilkumar K, Saba N, Rajini N et al (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729

    Article  CAS  Google Scholar 

  9. Saptaji K, Gebremariam MA, Azhari MABM (2018) Machining of biocompatible materials: a review. Int J Adv Manuf Technol 97:2255–2292. https://doi.org/10.1007/s00170-018-1973-2

    Article  Google Scholar 

  10. Deng H, McShan D, Zhang Y et al (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840–8848. https://doi.org/10.1021/acs.est.6b00998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kausar A (2019) Applications of polymer/graphene nanocomposite membranes: A review. Mater Res Innov 23:276–287

    Article  CAS  Google Scholar 

  12. Huang SM, Liu SM, Ko CL, Chen WC (2022) Advances of hydroxyapatite hybrid organic composite used as drug or protein carriers for biomedical applications: A review. Polym (Basel) 14:976. https://doi.org/10.3390/polym14050976

    Article  CAS  Google Scholar 

  13. Zhao D, Yu S, Sun B et al (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polym (Basel) 10(4):462. https://doi.org/10.3390%2Fpolym10040462

  14. Zohdy KM, El-Sherif RM, El-Shamy AM (2023) Effect of pH fluctuations on the biodegradability of nanocomposite Mg-alloy in simulated bodily fluids. Chem Pap 77:1317–1337. https://doi.org/10.1007/s11696-022-02544-y

    Article  CAS  Google Scholar 

  15. Wang G, Wang Z, Lee B et al (2017) Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP. Polymer (Guildf) 129:57–67. https://doi.org/10.1016/j.polymer.2017.09.029

    Article  CAS  Google Scholar 

  16. Pan X, Fantin M, Yuan F, Matyjaszewski K (2018) Externally controlled atom transfer radical polymerization. Chem Soc Rev 47:5457–5490. https://doi.org/10.1039/c8cs00259b

    Article  CAS  PubMed  Google Scholar 

  17. Saudi S, Jun S, Fialkova S et al (2023) Incorporating nanoconfined chitin-fibrils in poly (ε-caprolactone) membrane scaffolds improves mechanical and chemical properties for biomedical application. J Biomed Mater Res A 111:1185–1199. https://doi.org/10.1002/jbm.a.37507

    Article  CAS  PubMed  Google Scholar 

  18. Kausar A (2019) Polyacrylonitrile-based nanocomposite fibers: A review of current developments. J Plast Film Sheeting 35:295–316

    Article  CAS  Google Scholar 

  19. Zhou Z, Lai C, Zhang L et al (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer (Guildf) 50:2999–3006. https://doi.org/10.1016/j.polymer.2009.04.058

    Article  CAS  Google Scholar 

  20. Ucar N, Kizildag N, Onen A et al (2015) Polyacrylonitrile-polyaniline composite nanofiber webs: Effects of solvents, redoping process and dispersion technique. Fibers Polym 16:2223–2236. https://doi.org/10.1007/s12221-015-5426-3

    Article  CAS  Google Scholar 

  21. Duan G, Liu S, Hou H (2018) Synthesis of polyacrylonitrile and mechanical properties of its electrospun nanofibers. E-Polym 18:569–573. https://doi.org/10.1515/epoly-2018-0158

    Article  CAS  Google Scholar 

  22. Xue TJ, Mckinney MA, Wilkie CA (1997) The thermal degradation of polyacrylonitrile. Polym Degrad Stab 58:193–202. https://doi.org/10.1016/S0141-3910(97)00048-7

    Article  CAS  Google Scholar 

  23. Saeed K, Park SY (2010) Preparation and characterization of multiwalled carbon nanotubes/ polyacrylonitrile nanofibers. J Polym Res 17:535–540. https://doi.org/10.1007/s10965-009-9341-4

    Article  CAS  Google Scholar 

  24. Shi Q, Vitchuli N, Nowak J et al (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47:1402–1409. https://doi.org/10.1016/j.eurpolymj.2011.04.002

    Article  CAS  Google Scholar 

  25. Pan SF, Ke XX, Wang TY et al (2019) Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind Eng Chem Res 58:984–993. https://doi.org/10.1021/acs.iecr.8b04893

    Article  CAS  Google Scholar 

  26. Sanjay P, Tagolao S, Dirkzwager I, Bartlett A (2012) A survey of the accuracy of interpretation of intraoperative cholangiograms. HPB 14:673–676. https://doi.org/10.1111/j.1477-2574.2012.00501.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patel S, Konar M, Sahoo H, Hota G (2019) Surface functionalization of electrospun PAN nanofibers with ZnO-Ag heterostructure nanoparticles: Synthesis and antibacterial study. Nanotechnology. https://doi.org/10.1088/1361-6528/ab045d

    Article  PubMed  Google Scholar 

  28. Cho K, Wang G, Raju, et al (2019) Selective Atomic-Level Etching on Short S-Glass Fibres to Control Interfacial Properties for Restorative Dental Composites. Sci Rep. https://doi.org/10.1038/s41598-019-40524-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khan I, Elhissi A, Shah M et al (2013) Liposome-based carrier systems and devices used for pulmonary drug delivery. In: Biomaterials and Medical Tribology: Research and Development. Elsevier Inc., pp 395–443. https://doi.org/10.1533/9780857092205.395

  30. Nagamine S, Kosaka K, Tohyama S, Ohshima M (2014) Silica nanofiber with hierarchical pore structure templated by a polymer blend nanofiber and surfactant micelle. Mater Res Bull 50:108–112. https://doi.org/10.1016/j.materresbull.2013.10.025

    Article  CAS  Google Scholar 

  31. Hou Z, Zhang C, Li C et al (2010) Luminescent porous silica fibers as drug carriers. Chem Eur J 16:14513–14519. https://doi.org/10.1002/chem.201000900

    Article  CAS  PubMed  Google Scholar 

  32. Abbasi N, Hamlet S, Love RM, Nguyen NT (2020) Porous scaffolds for bone regeneration. J Sci Adv Mater Devices 5:1–9

    Article  Google Scholar 

  33. Chang WM, Wang CC, Chen CY (2019) Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors. Electrochim Acta 296:268–275. https://doi.org/10.1016/j.electacta.2018.08.048

    Article  CAS  Google Scholar 

  34. Yan T, Tian L, Pan Z (2016) Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device. Fibers Polym 17:1627–1633. https://doi.org/10.1007/s12221-016-6553-1

    Article  CAS  Google Scholar 

  35. Yalcinkaya F (2019) A review on advanced nanofiber technology for membrane distillation. J Eng Fiber Fabr 14:01–12. https://doi.org/10.1177/1558925018824901

    Article  CAS  Google Scholar 

  36. Im YM, Choi HM, Nathanael AJ et al (2020) Effects of glycerol on melt spinning of polyacrylonitrile copolymer and tetrapolymer. Fibers Polym 21:376–383. https://doi.org/10.1007/s12221-020-9412-z

    Article  CAS  Google Scholar 

  37. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  38. Yusof N, Ismail AF (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis 93:1–13

    Article  CAS  Google Scholar 

  39. Khan AA, Shaheen S (2014) Preparation, characterization of polyacrylonitrile-aluminum hydroxide composite anion exchanger and its analytical application as AsO 4–3 selective membrane electrode. Compos B Eng 58:312–317. https://doi.org/10.1016/j.compositesb.2013.10.062

    Article  CAS  Google Scholar 

  40. Kausar A (2019) Polyacrylonitrile nanocomposite with carbon nanostructures: a review. Polyme Plast Technol Mater 58:707–731

    Article  CAS  Google Scholar 

  41. Mo Y, Yang M, Lu Z, Huang F (2013) Preparation and tribological performance of chemically-modified reduced graphene oxide/polyacrylonitrile composites. Compos Part A Appl Sci Manuf 54:153–158. https://doi.org/10.1016/j.compositesa.2013.07.014

    Article  CAS  Google Scholar 

  42. Malik T, Razzaq H, Razzaque S et al (2019) Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym Bull 76:4879–4901

    Article  CAS  Google Scholar 

  43. Chatterjee U, Jewrajka SK, Guha S (2009) Dispersion of functionalized silver nanoparticles in polymer matrices: stability, characterization, and physical properties. Polym Compos 30:827–834. https://doi.org/10.1002/pc.20655

    Article  CAS  Google Scholar 

  44. Mi HY, Li Z, Turng LS et al (2014) Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties. Mater Des 56:398–404. https://doi.org/10.1016/j.matdes.2013.11.029

    Article  CAS  Google Scholar 

  45. Genitsaris S, Stefanidou N, Katsiapi M et al (2017) Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmos Environ 157:101–110. https://doi.org/10.1016/j.atmosenv.2017.03.018

    Article  CAS  Google Scholar 

  46. Aragaw TA (2020) Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2020.111517

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hartati S, Zulfi A, Maulida PYD et al (2022) Synthesis of electrospun PAN/TiO2/Ag nanofibers membrane as potential air filtration media with photocatalytic activity. ACS Omega 7:10516–10525. https://doi.org/10.1021/acsomega.2c00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kharaghani D, Khan MQ, Shahrzad A et al (2018) Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber. Nanomater. https://doi.org/10.3390/nano8070461

    Article  Google Scholar 

  49. Hashmi M, Ullah S, Kim IS (2019) Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Curr Res Biotechnol 1:1–10. https://doi.org/10.1016/j.crbiot.2019.07.001

    Article  Google Scholar 

  50. Ambekar RS, Kandasubramanian B (2019) Advancements in nanofibers for wound dressing: a review. Eur Polym J 117:304–336

    Article  CAS  Google Scholar 

  51. Bhattacharya D, Ghosh B, Mukhopadhyay M (2019) Development of nanotechnology for advancement and application in wound healing: A review. IET Nanobiotechnol 13:778–785

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moura D, Souza MT, Liverani L et al (2017) Development of a bioactive glass-polymer composite for wound healing applications. Mater Sci Eng C 76:224–232. https://doi.org/10.1016/j.msec.2017.03.037

    Article  CAS  Google Scholar 

  53. Lv H, Guo S, Zhang G et al (2021) Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polym (Basel). https://doi.org/10.3390/polym13244286

    Article  Google Scholar 

  54. Sarwar MN, Ullah A, Haider MK et al (2021) Evaluating antibacterial efficacy and biocompatibility of pan nanofibers loaded with diclofenac sodium salt. Polym (Basel) 13:1–14. https://doi.org/10.3390/polym13040510

    Article  CAS  Google Scholar 

  55. Fayemi OE, Ekennia AC, Katata-Seru L et al (2018) Antimicrobial and Wound Healing Properties of Polyacrylonitrile-Moringa Extract Nanofibers. ACS Omega 3:4791–4797. https://doi.org/10.1021/acsomega.7b01981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taymouri S, Hashemi S, Varshosaz J et al (2021) Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J Biomater Sci Polym Ed 32:1944–1965. https://doi.org/10.1080/09205063.2021.1952380

    Article  CAS  PubMed  Google Scholar 

  57. Ringaci A, Yaremenko AV, Shevchenko KG et al (2021) Metal-organic frameworks for simultaneous gene and small molecule delivery in vitro and in vivo. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129386

    Article  Google Scholar 

  58. Yang J, Liu CL, Ding YN et al (2021) Synergistic antibacterial polyacrylonitrile/gelatin nanofibers coated with metal-organic frameworks for accelerating wound repair. Int J Biol Macromol 189:698–704. https://doi.org/10.1016/j.ijbiomac.2021.08.175

    Article  CAS  PubMed  Google Scholar 

  59. Eswari JS, Naik S (2020) A critical analysis on various technologies and functionalized materials for manufacturing dialysis membranes. Mater Sci Energy Technol 3:116–126. https://doi.org/10.1016/j.mset.2019.10.011

    Article  CAS  Google Scholar 

  60. Azhar O, Jahan Z, Sher F et al (2021) Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2021.112127

    Article  Google Scholar 

  61. Mollahosseini A, Abdelrasoul A, Shoker A (2020) A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.122911

    Article  Google Scholar 

  62. Lu L, Samarasekera C, Yeow JTW (2015) Creatinine adsorption capacity of electrospun polyacrylonitrile (PAN)-zeolite nanofiber membranes for potential artificial kidney applications. J Appl Polym Sci. https://doi.org/10.1002/app.42418

    Article  Google Scholar 

  63. Bahramimehr F, Esmaeili A (2019) Producing hybrid nanofiber-based on /PAN/Fe3O4/zeolite/nettle plant extract/urease and a deformed coaxial natural polymer to reduce toxicity materials in the blood of dialysis patients. J Biomed Mater Res A 107:1736–1743. https://doi.org/10.1002/jbm.a.36689

    Article  CAS  PubMed  Google Scholar 

  64. Dziadek M, Charuza K, Kudlackova R et al (2021) Modification of heat-induced whey protein isolate hydrogel with highly bioactive glass particles results in promising biomaterial for bone tissue engineering. Mater Des. https://doi.org/10.1016/j.matdes.2021.109749

    Article  Google Scholar 

  65. Gupta D, Kocot M, Tryba AM et al (2020) Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration. Mater Des. https://doi.org/10.1016/j.matdes.2019.108408

    Article  Google Scholar 

  66. Pirosa A, Gottardi R, Alexander PG, Tuan RS (2018) Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 9(1):112. https://doi.org/10.1186/s13287-018-0847-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2:224–247

    PubMed  PubMed Central  Google Scholar 

  68. Lareau CR, Deren ME, Fantry A et al (2015) Does autogenous bone graft work? A logistic regression analysis of data from 159 papers in the foot and ankle literature. Foot Ankle Surg 21:150–159

    Article  PubMed  Google Scholar 

  69. Shibuya N, Jupiter DC (2015) Bone Graft Substitute: Allograft and Xenograft. Clin Podiatr Med Surg 32:21–34

    Article  PubMed  Google Scholar 

  70. Tan XP, Tan YJ, Chow CSL et al (2017) Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C 76:1328–1343

    Article  CAS  Google Scholar 

  71. Li JJ, Ebied M, Xu J, Zreiqat H (2018) Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering. Adv Healthc Mater. https://doi.org/10.1002/adhm.201701061

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li JJ, Kaplan DL, Zreiqat H (2014) Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2:7272–7306. https://doi.org/10.1039/c4tb01073f

    Article  CAS  PubMed  Google Scholar 

  73. Wu S, Wang J, Zou L et al (2018) A three-dimensional hydroxyapatite/polyacrylonitrile composite scaffold designed for bone tissue engineering. RSC Adv 8:1730–1736. https://doi.org/10.1039/c7ra12449j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haider MK, Sun L, Ullah A et al (2021) Polyacrylonitrile/Carbon Black nanoparticle/Nano-Hydroxyapatite (PAN/nCB/HA) composite nanofibrous matrix as a potential biomaterial scaffold for bone regenerative applications. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2021.102259

    Article  Google Scholar 

  75. Vetrik M, Parizek M, Hadraba D et al (2018) Porous Heat-Treated Polyacrylonitrile Scaffolds for Bone Tissue Engineering. ACS Appl Mater Interfaces 10:8496–8506. https://doi.org/10.1021/acsami.7b18839

    Article  CAS  PubMed  Google Scholar 

  76. Ullah S, Hashmi M, Kharaghani D et al (2019) Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats. Int J Nanomed 14:2693–2703. https://doi.org/10.2147/IJN.S197665

    Article  CAS  Google Scholar 

  77. Wu S, Wang J, Jin L et al (2018) Effects of Polyacrylonitrile/MoS2 Composite Nanofibers on the Growth Behavior of Bone Marrow Mesenchymal Stem Cells. ACS Appl Nano Mater 1:337–343. https://doi.org/10.1021/acsanm.7b00188

    Article  CAS  Google Scholar 

  78. Wahab JA, Al Mamun S (2020) Polyacrylonitrile nanofiber mats containing titania/AgNP composite nanoparticles for antibacterial applications. Mater Res Express. https://doi.org/10.1088/2053-1591/ab6c26

    Article  Google Scholar 

  79. Kharaghani D, Kee Jo Y, Khan MQ et al (2018) Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method. Eur Polym J 108:69–75. https://doi.org/10.1016/j.eurpolymj.2018.08.021

    Article  CAS  Google Scholar 

  80. Serag E, El-Aziz AMA, El-Maghraby A, Taha NA (2022) Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber. Sci Rep. https://doi.org/10.1038/s41598-022-19390-3

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yang Q, Sui G, Shi YZ et al (2013) Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon N Y 56:288–295. https://doi.org/10.1016/j.carbon.2013.01.014

    Article  CAS  Google Scholar 

  82. Kim SE, Tiwari AP (2022) Mussel-inspired polydopamine-enabled in situ-synthesized silver nanoparticle-anchored porous polyacrylonitrile nanofibers for wound-healing applications. Int J Polym Mater Polym Biomater 71:471–480. https://doi.org/10.1080/00914037.2020.1857381

    Article  CAS  Google Scholar 

  83. Samadian H, Mobasheri H, Azami M, Faridi-Majidi R (2020) Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Sci Rep 1. https://doi.org/10.1038/s41598-020-71455-3

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mirakabad FST, Hosseinzadeh S, Abbaszadeh HA et al (2021) Optimization of topography and surface properties of polyacrylonitrile-based electrospun scaffolds via nonoclay concentrations and its effect on osteogenic differentiation of human mesenchymal stem cells. Iranian J Pharmaceutical Res 20:385–404. https://doi.org/10.22037/IJPR.2021.115119.15208

    Article  CAS  Google Scholar 

  85. Hashemi SF, Mehrabi M, Ehterami A et al (2021) In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2020.102077

    Article  PubMed  PubMed Central  Google Scholar 

  86. Phan DN, Dorjjugder N, Saito Y et al (2020) The synthesis of silver-nanoparticle-anchored electrospun polyacrylonitrile nanofibers and a comparison with as-spun silver/polyacrylonitrile nanocomposite membranes upon antibacterial activity. Polym Bull 77:4197–4212. https://doi.org/10.1007/s00289-019-02969-8

    Article  CAS  Google Scholar 

  87. Sadrearhami Z, Morshed M, Varshosaz J (2015) Production and evaluation of polyblend of agar and polyacrylonitrile nanofibers for in vitro release of methotrexate in cancer therapy. Fibers Polym 16:254–262. https://doi.org/10.1007/s12221-015-0254-z

    Article  CAS  Google Scholar 

  88. Arbab Solimani S, Irani S, Mohamadali M, Bakhshi H (2023) Carboxymethyl Chitosan-Functionalized Polyaniline/Polyacrylonitrile Nano-Fibers for Neural Differentiation of Mesenchymal Stem Cells. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04526-6

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yadav R, Balasubramanian K (2015) Polyacrylonitrile/Syzygium aromaticum hierarchical hydrophilic nanocomposite as a carrier for antibacterial drug delivery systems. RSC Adv 5:3291–3298. https://doi.org/10.1039/c4ra12755b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank SRM for providing the scholarship under the SRMIST-Fellowship scheme for continuing my research.

Funding

The authors declare that there is no active funding scheme for this work.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, writing, and Conceptual, Balaganesh Danagody. Editing and Drafting, Neeraja Bose. Validation and Supervision, Dr. R. Kalaivizhi.

Corresponding author

Correspondence to Kalaivizhi Rajappan.

Ethics declarations

Conflict of interest

There is no conflict of interest between the Authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 4.98 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danagody, B., Bose, N. & Rajappan, K. Electrospun polyacrylonitrile-based nanofibrous membrane for various biomedical applications. J Polym Res 31, 119 (2024). https://doi.org/10.1007/s10965-024-03965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03965-x

Keywords

Navigation