Skip to main content
Log in

Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Coronary restenosis is the primary unsolved problem following open heart surgery or percutaneous transluminal coronary angioplasty, and yet, it remains unknown how a pharmaceutical strategy minimizes restenosis by scaffold-based administration of several medicines. In this study, 3D-printed hexagonal polymer scaffolds of sodium alginate/hyaluronic acid/gelatin (SA/HA/Gel) loaded with heparin drug were fabricated. The morphology, physicochemical, and surface properties of the scaffolds were investigated through SEM, FTIR, porosity, wettability, water absorption, mechanical properties, biodegradability, and heparin release studies. The cell-scaffold interactions were studied by the cell attachment assays and MTT assay on L929 cell lines. The investigation demonstrated that raising the print angle resulted in 3D-printed scaffolds having higher porosity percentages, mechanical qualities, and heparin release (P < 0.05), but had no discernible impact on the scaffolds’ biological properties (P > 0.05). Heparin showed a regulated slow-release behavior that was consistent with the scaffolds’ rate of degradation and may be continually efficient during tissue regeneration. According to the outcomes of the in vitro biological evaluation, the 3D-printed scaffolds showed suitable cell attachment and biocompatibility (> 90%), and they were not overtly hazardous. The findings support the use of the fabricated 3D-printed SA/HA/Gel heparin-loaded scaffolds for cardiovascular tissue applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37

    Article  CAS  Google Scholar 

  2. Starly B, Shirwaiker R (2015) 3D bioprinting techniques. In: 3D bioprinting and nanotechnology in tissue Engineering and Regenerative Medicine, 2nd edn. Elsevier, pp 71–91. https://doi.org/10.1016/C2020-0-01782-2. ISBN: 9780128245538

  3. Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10:34002

    Article  Google Scholar 

  4. Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, Vahdat S, Baharvand H (2015) Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res A 103:3179–3187

    Article  CAS  PubMed  Google Scholar 

  5. Yao CL, Chen JH, Lee CH (2017) Effects of various monomers and micro-structure of polyhydroxyalkanoates on the behavior of endothelial progenitor cells and endothelial cells for vascular tissue engineering. J Polym Res. https://doi.org/10.1007/s10965-017-1341-1

    Article  Google Scholar 

  6. Lee S-J, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:16018

    Article  Google Scholar 

  7. Radmanesh S, Shabangiz S, Koupaei N, Hassanzadeh-Tabrizi SA (2022) 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. J Polym Res 29:50. https://doi.org/10.1007/s10965-022-02899-6

    Article  CAS  Google Scholar 

  8. Zhu K, Shin SR, van Kempen T, Li Y, Ponraj V, Nasajpour A, Mandla S, Hu N, Liu X, Leijten J (2017) Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater 27:1605352

    Article  PubMed  PubMed Central  Google Scholar 

  9. Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21:685

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481

    Article  CAS  PubMed  Google Scholar 

  11. Ma G, Fang D, Liu Y, Zhu X, Nie J (2012) Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743

    Article  CAS  PubMed  Google Scholar 

  12. Rajaram A, Schreyer DJ, Chen DXB (2015) Use of the polycation polyethyleneimine to improve the physical properties of alginate–hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. J Biomater Sci Polym Ed 26:433–445. https://doi.org/10.1080/09205063.2015.1016383

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Cai L-Q, Nugraha B, Gao Y, Leo HL (2014) Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem 21:2480–2496

    Article  CAS  PubMed  Google Scholar 

  14. Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR, Irani M (2021) Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers. J Drug Deliv Sci Technol 67:102937

    Article  Google Scholar 

  15. Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348

    Article  CAS  PubMed  Google Scholar 

  16. Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M (2018) Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. J Control Release 272:83–96

    Article  CAS  PubMed  Google Scholar 

  17. Erdem A, Darabi MA, Nasiri R, Sangabathuni S, Ertas YN, Alem H, Hosseini V, Shamloo A, Nasr AS (2020) Ahadian, 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc Mater 9:1901794

    Article  CAS  Google Scholar 

  18. Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331

    Article  CAS  PubMed  Google Scholar 

  19. Spencer AR, Shirzaei Sani E, Soucy JR, Corbet CC, Primbetova A, Koppes RA, Annabi N (2019) Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces 11:30518–30533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farsi M, Asefnejad A, Baharifar H (2022) A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Prog Biomater 11:67–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Detta N, Errico C, Dinucci D, Puppi D, Clarke DA, Reilly GC, Chiellini F (2010) Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med 21:1761–1769

    Article  CAS  PubMed  Google Scholar 

  22. Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951

    Article  CAS  PubMed  Google Scholar 

  23. Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19

    Article  CAS  Google Scholar 

  24. Aksoy AE, Hasirci V, Hasirci N (2008) Surface modification of polyurethanes with covalent immobilization of heparin. Macromol Symp 269(1):145–153. https://doi.org/10.1002/masy.200850918

    Article  CAS  Google Scholar 

  25. Chen L, He Z, Chen B, Yang M, Zhao Y, Sun W, Xiao Z, Zhang J, Dai J (2010) Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci Mater Med 21:309–317

    Article  CAS  PubMed  Google Scholar 

  26. Zhao B, Zhao Z, Ma J, Ma X (2019) Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neurosci Lett 705:259–264

    Article  CAS  PubMed  Google Scholar 

  27. Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:15004

    Article  Google Scholar 

  28. Arabi N, Zamanian A, Rashvand SN, Ghorbani F (2018) The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromol Mater Eng 303(3):1700539

    Article  Google Scholar 

  29. Esmaeili J, Barati A, Salehi E, Ai J (2023) Reliable kinetics for drug delivery with a microfluidic device integrated with the dialysis bag. Mol Pharm 20:1129–1137. https://doi.org/10.1021/acs.molpharmaceut.2c00846

    Article  CAS  PubMed  Google Scholar 

  30. Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208

    Article  PubMed  Google Scholar 

  31. Hsieh C-F, Chen C-H, Kao H-H, Govindaraju DT, Dash BS, Chen J-P (2022) PLGA/gelatin/hyaluronic acid fibrous membrane scaffold for therapeutic delivery of adipose-derived stem cells to promote wound healing. Biomedicines. 10:2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Serafin A, Culebras M, Collins MN (2023) Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int J Biol Macromol 233:123438. https://doi.org/10.1016/j.ijbiomac.2023.123438

    Article  CAS  PubMed  Google Scholar 

  33. Dutta SD, Hexiu J, Patel DK, Ganguly K (2021) Lim, 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658

    Article  CAS  PubMed  Google Scholar 

  34. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  PubMed  Google Scholar 

  35. Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y (2017) Yan, 3D-printed cellular structures for bone biomimetic implants. Addit Manuf 15:93–101

    CAS  Google Scholar 

  36. Baniasadi H, Sa AR, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366

    Article  CAS  PubMed  Google Scholar 

  37. Roy S, Rhim J-W (2021) Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf B Biointerfaces 204:111830

    Article  CAS  PubMed  Google Scholar 

  38. Haung S-M, Lin Y-T, Liu S-M, Chen J-C, Chen W-C (2021) In vitro evaluation of a composite gelatin–hyaluronic acid–alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 7:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J (2018) Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol 116:1026–1036

    Article  CAS  PubMed  Google Scholar 

  40. Athamneh T, Amin A, Benke E, Ambrus R, Leopold CS, Gurikov P, Smirnova I (2019) Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J Supercrit Fluids 150:49–55

    Article  CAS  Google Scholar 

  41. Li X, Xu P, Cheng Y, Zhang W, Zheng B, Wang Q (2020) Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Mater Sci Eng C 111:110749

    Article  CAS  Google Scholar 

  42. Zhou Z, Chen J, Peng C, Huang T, Zhou H, Ou B, Chen J, Liu Q, He S, Cao D, Huang H, Xiang L (2014) Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. J Macromol Sci Part A 51:318–325. https://doi.org/10.1080/10601325.2014.882693

    Article  CAS  Google Scholar 

  43. Lee SJ, Seok JM, Lee JH, Lee J, Kim WD, Park SA (2021) Three-dimensional printable hydrogel using a hyaluronic acid/sodium alginate bio-ink. Polymers (Basel) 13. https://doi.org/10.3390/polym13050794

  44. Fir MM, Smidovnik A, Milivojevic L, Zmitek J, Prosek M (2009) Studies of CoQ10 and cyclodextrin complexes: solubility, thermo-and photo-stability. J Incl Phenom Macrocycl Chem 64:225–232

    Article  CAS  Google Scholar 

  45. Paxton NC, Woodruff MA (2022) Measuring contact angles on hydrophilic porous scaffolds by implementing a novel raised platform approach: a technical note. Polym Adv Technol 33:3759–3765

    Article  CAS  Google Scholar 

  46. Aidun A, Safaei Firoozabady A, Moharrami M, Ahmadi A, Haghighipour N, Bonakdar S, Faghihi S (2019) Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: enhanced osteogenic properties for bone tissue engineering. Artif Organs. https://doi.org/10.1111/aor.13474

    Article  PubMed  Google Scholar 

  47. Yuan L, Wu Y, Gu Q, El-Hamshary H, El-Newehy M, Mo X (2017) Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Int J Biol Macromol 96:569–577. https://doi.org/10.1016/j.ijbiomac.2016.12.058

    Article  CAS  PubMed  Google Scholar 

  48. Ben N, Halima (2016) Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832

    Article  Google Scholar 

  49. Nguyen-Truong M, Li YV, Wang Z (2020) Mechanical considerations of electrospun scaffolds for myocardial tissue and regenerative engineering. Bioengineering 7:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vishwas M, Basavaraj CK (2017) Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater Today Proc. 4:10994–11003

    Article  Google Scholar 

  51. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  PubMed  Google Scholar 

  52. Schmid R, Schmidt SK, Detsch R, Horder H, Blunk T, Schrüfer S, Schubert DW, Fischer L, Thievessen I, Heltmann-Meyer S (2022) A New Printable Alginate/Hyaluronic Acid/Gelatin hydrogel suitable for Biofabrication of in Vitro and in vivo metastatic melanoma models. Adv Funct Mater 32:2107993

    Article  CAS  Google Scholar 

  53. Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32:889–900

    Article  CAS  Google Scholar 

  54. Joshi A, Kaur T, Singh N (2022) 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells. ACS Appl Bio Mater 5:2870–2879

    Article  CAS  PubMed  Google Scholar 

  55. Liu C, Qin W, Wang Y, Ma J, Liu J, Wu S, Zhao H (2021) 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int J Nanomed 16:8417

    Article  CAS  Google Scholar 

  56. Yu Y, Chen J, Chen R, Cao L, Tang W, Lin D, Wang J, Liu C (2015) Enhancement of VEGF-mediated angiogenesis by 2-N, 6-O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl Mater Interfaces 7:9982–9990

    Article  CAS  PubMed  Google Scholar 

  57. Rambhia KJ, Ma PX (2015) Controlled drug release for tissue engineering. J Control Release 219:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang B, Nasereddin J, McDonagh T, von Zeppelin D, Gleadall A, Alqahtani F, Bibb R, Belton P, Qi S (2021) Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 604:120626

    Article  CAS  PubMed  Google Scholar 

  59. Zheng J, Dong E, Kang J, Sun C, Liu C, Wang L, Li D (2021) Effects of raster angle and material components on mechanical properties of polyether-ether-ketone/calcium silicate scaffolds. Polymers (Basel) 13:2547. https://doi.org/10.3390/polym13152547

    Article  CAS  PubMed  Google Scholar 

  60. Alizadeh-Osgouei M, Li Y, Vahid A, Ataee A, Wen C (2021) High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications. Smart Mater Med 2:15–25. https://doi.org/10.1016/j.smaim.2020.10.003

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Mahdi safikhani: Investigation; Project administration; Resources; Software; Writing - original draft. Azadeh Asefnejad: Conceptualization; Data curation; Supervision; and review & editing. Rouhollah Mehdinavaz Aghdam: Methodology; Software; Supervision; Validation; review & editing. Sadegh Rahmati: Software; Supervision; Validation; Visualization.

Corresponding author

Correspondence to Azadeh Asefnejad.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary file2 (DOCX 1298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safikhani, M.M., Asefnejad, A., Aghdam, R.M. et al. Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold. J Polym Res 31, 121 (2024). https://doi.org/10.1007/s10965-024-03942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03942-4

Keywords

Navigation