Skip to main content
Log in

Asymmetric controlled cyclic quantum teleportation of two, three and four qubit states with optimal quantum resources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The present paper introduces a novel theoretical protocol using GHZ-state measurement to implement asymmetric controlled cyclic teleportation of two, three, and four-qubit states with significantly reduced quantum resource consumption. By utilizing a quantum channel of twenty qubits, the user Alice can transmit a 2-different two-qubit state to Bob, the user Bob can teleport 2-different three-qubit state to Charlie and further Charlie can transmit a four-qubit state to Alice under the controller David. GHZ-State measurement, Single-Qubit Measurement and Unitary operators are used to reconstruct the desired state. Compared with existing protocols in the literature, the proposed protocol is highly resource-efficient as it only utilizes a few GHZ-state measurements. The protocol's security has also been investigated and found to be secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are not associated with this manuscript or will not be deposited (Author’s comment: The data in the manuscript are derived from our calculations).

References

  1. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    ADS  Google Scholar 

  2. Kwek, L.C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 1–8 (2021)

    Google Scholar 

  3. Li, Z., Kejin, W.: Improving parameter optimization in decoy-state quantum key distribution. Quantum Eng. 2022, 1–9 (2022)

    Google Scholar 

  4. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)

    MathSciNet  ADS  Google Scholar 

  5. Liu, X., Luo, D., Lin, G., Chen, Z., Huang, C., Li, S., Wei, K.: Fiber-based quantum secure direct communication without active polarization compensation science China physics. Mech. Astron. 65(12), 120311 (2022)

    Google Scholar 

  6. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Google Scholar 

  7. Xu, H., Song, X.K., Wang, D., Ye, L.: Quantum sensing of control errors in three-level systems by coherent control techniques. Sci. China Phys. Mech. Astron. 66(4), 240314 (2023)

    ADS  Google Scholar 

  8. Yan, P.S., Zhou, L., Zhong, W., et al.: Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron. 66, 250301 (2023). https://doi.org/10.1007/s11433-022-2065-x

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). https://doi.org/10.1103/physrevlett.70.1895

    Article  MathSciNet  ADS  Google Scholar 

  10. Tang, J., Ma, S., Li, Q.: Universal hierarchical quantum information splitting schemes of an arbitrary multi-qubit state. Int. J. Theor. Phys. 61(8), 209 (2022). https://doi.org/10.1007/s10773-022-05180-0

    Article  MathSciNet  Google Scholar 

  11. Jiang, M.: An optimized quantum information splitting scheme with multiple controllers. Quantum Inf. Process. 15(12), 5073–5087 (2016). https://doi.org/10.1007/s11128-016-1437-2

    Article  MathSciNet  ADS  Google Scholar 

  12. Lu, X.Q., Feng, K.H., Zhou, P.: Deterministic remote preparation of an arbitrary single-qudit state with high-dimensional spatial-mode entanglement via linear-optical elements. Int. J. Theor. Phys. 61(2), 36 (2022)

    MathSciNet  Google Scholar 

  13. Jing, R.H., Huang, Y.B., Bi, A.A., Luo, W.W., Zhou, P., Lan, Q.: Mentor initialed multiparty hierarchical joint remote preparation of an arbitrary n-qudit state via generalized Bell states. Phys. Scr. 99(2), 025103 (2024)

    ADS  Google Scholar 

  14. Kuo, S.Y., Tseng, K.C., Yang, C.C., Chou, Y.H.: Efficient multiparty quantum secret sharing based on a novel structure and single qubits. EPJ Quantum Technol. 10(1), 29 (2023)

    Google Scholar 

  15. Xiao, L., Long, G.L., Deng, F., Pan, J.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004). https://doi.org/10.1103/PhysRevA.69.052307

    Article  ADS  Google Scholar 

  16. Zhou, L., Sheng, Y.B.: Complete logic bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92(4), 042314 (2015)

    ADS  Google Scholar 

  17. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5(1), 13453 (2015)

    ADS  Google Scholar 

  18. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 2101–2112 (2017). https://doi.org/10.1007/s10773-017-3353-3

    Article  MathSciNet  Google Scholar 

  19. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55(3), 1601–1611 (2016). https://doi.org/10.1007/s10773-015-2798-5

    Article  Google Scholar 

  20. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Perfect teleportation of an arbitrary three-qubit state by using W-class states. Int. J. Theor. Phys. 50(10), 3225–3229 (2011). https://doi.org/10.1007/s10773-011-0825-8

    Article  MathSciNet  Google Scholar 

  21. Cao, L.Y., Xue, S.B., Jiang, M.: Teleportation of an unknown four-qubit cluster state based on cluster states with minimum resource. IEEE Access 8, 81447–81457 (2020). https://doi.org/10.1109/ACCESS.2020.2991065

    Article  Google Scholar 

  22. Harraz, S., Cong, S., Nieto, J.J.: Optimal tripartite quantum teleportation protocol through noisy channels. Quantum Inf. Process. 22(1), 83 (2023)

    MathSciNet  ADS  Google Scholar 

  23. Zeng, Z.: Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement. Chin. Phys. B 32(6), 060301 (2023)

    ADS  Google Scholar 

  24. Tsujimoto, Y., Tanaka, M., Iwasaki, N., Ikuta, R., Miki, S., Yamashita, T., Terai, H., Yamamoto, T., Koashi, M., Imoto, N.: High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources. Sci. Rep. 8(1), 1446 (2018)

    ADS  Google Scholar 

  25. Carvacho, G., Graffitti, F., D’Ambrosio, V., Hiesmayr, B.C., Sciarrino, F.: Experimental investigation on the geometry of GHZ states. Sci. Rep. 7(1), 13265 (2017)

    ADS  Google Scholar 

  26. Ma, S., He, M., Jiang, J.: High-dimensional bidirectional controlled teleportation based on network coding. Quantum Inf. Process. 21(12), 398 (2022)

    MathSciNet  ADS  Google Scholar 

  27. Hu, X.M., Zhang, C., Liu, B.H., Cai, Y., Ye, X.J., Guo, Y., Guo, G.C.: Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125(23), 230501 (2020)

    ADS  Google Scholar 

  28. Zhang, Z., Sang, Y.: Bidirectional quantum teleportation in multi-hop communication network. Quantum Inf. Process. 22(5), 201 (2023)

    MathSciNet  ADS  Google Scholar 

  29. Kazemikhah, P., Aghababa, H.: Bidirectional quantum teleportation of an arbitrary number of qubits by using four qubit cluster state. Int. J. Theor. Phys. 60(1), 378–386 (2021). https://doi.org/10.1007/s10773-020-04704-w

    Article  MathSciNet  Google Scholar 

  30. Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the quantum channel. IEEE Commun. Lett. 25(3), 936–939 (2021). https://doi.org/10.1109/LCOMM.2020.3036587

    Article  Google Scholar 

  31. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M., M.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2 n Bell states as a quantum channel. Opt. Quantum Electron. 54(9), 568 (2022)

    Google Scholar 

  32. Karlsson, A., Bournnane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394–4400 (1998)

    MathSciNet  ADS  Google Scholar 

  33. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013). https://doi.org/10.1007/s10773-012-1208-5

    Article  MathSciNet  Google Scholar 

  34. Kaur, S., Gill, S.: Asymmetric controlled quantum teleportation via eight-qubit entangled state in a noisy environment. Int. J. Theor. Phys. 62(2), 31 (2023)

    MathSciNet  Google Scholar 

  35. Kaur, S., Lal, J., Gill, S.: Bidirectional quantum controlled teleportation of unique four-qubit states by newly entangled 15-qubit state. Opt. Quant. Electron. 55(7), 1–25 (2023). https://doi.org/10.1007/s11082-023-04829-2

    Article  Google Scholar 

  36. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    ADS  Google Scholar 

  37. Kazemikhah, P., Tabalvandani, M.B., Mafi, Y., Aghababa, H.: Asymmetric bidirectional controlled quantum teleportation using eight qubit cluster state. Int. J. Theor. Phys. 61(2), 17 (2022)

    MathSciNet  Google Scholar 

  38. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)

    ADS  Google Scholar 

  39. Zhou, R.G., Qian, C., C., R. Xu,: A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in a noisy environment. Int. J. Theor. Phys. 59(1), 134–148 (2020). https://doi.org/10.1007/s10773-019-04302-5

    Article  MathSciNet  Google Scholar 

  40. Mandal, M.K., Choudhury, B.S., Samanta, S.: Asymmetric Bi-directional teleportation scheme in the presence of a mentor and a controller. Opt. Quant. Electron. 55(7), 589 (2023)

    Google Scholar 

  41. Mahjoory, A., Kazemikhah, P., Aghababa, H., Kolahdouz, M.: Asymmetric tridirectional quantum teleportation using seven-qubit cluster states. Phys. Scr. 98(8), 085218 (2023)

    ADS  Google Scholar 

  42. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Efficient controlled quantum broadcast protocol using 6 n-qubit cluster state in noisy channels. Opt. Quant. Electron. 55(7), 653 (2023)

    Google Scholar 

  43. Chen, Y.X., Du, J., Liu, S.X., Wang, X.H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201–210 (2017)

    MathSciNet  ADS  Google Scholar 

  44. Sang, Z.W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57, 3835–3838 (2018)

    MathSciNet  Google Scholar 

  45. Sun, Y.R., Li, Z.Z., Chen, X.B., Yang, Y.X., Y. X.: Asymmetric circular controlled quantum state transmission scheme in ideal and noisy environment. Int. J. Theor. Phys. 62(3), 1–14 (2023)

    MathSciNet  Google Scholar 

  46. Yang, B.: Asymmetric cyclic controlled quantum teleportation by using a quantum channel composed of six G states. Mod. Phys. Lett. B 36(22), 2250113 (2022)

    MathSciNet  ADS  Google Scholar 

  47. Sun, S., Zhang, H.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19(4), 120 (2020)

    MathSciNet  ADS  Google Scholar 

  48. Zhou, R.G., Ling, C.: Asymmetric cyclic controlled quantum teleportation by using nine-qubit entangled state. Int. J. Theor. Phys. 60(9), 3435–3459 (2019)

    MathSciNet  Google Scholar 

  49. Zhou, R.G., Qian, C., Ian, H.: Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states. IEEE Access 7, 42445–42449 (2019). https://doi.org/10.1109/ACCESS.2019.2907963

    Article  Google Scholar 

  50. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019)

    Google Scholar 

  51. Gu, J., Hwang, T., Tsai, C.W.: On the controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 59, 200–205 (2020)

    Google Scholar 

  52. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (2008). https://doi.org/10.1088/0953-4075/41/14/145506

    Article  ADS  Google Scholar 

  53. Peng, J.Y., Lei, H.X.: Cyclic remote state preparation. Int. J. Theor. Phys. 60, 1593–1602 (2021)

    MathSciNet  Google Scholar 

  54. Jiang, S.X., Zhou, R.G., Xu, R., Luo, G.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. Ieee Access 7, 80530–88054 (2019)

    Google Scholar 

  55. Sang, Z.W.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 255–260 (2019)

    Google Scholar 

  56. Choudhury, B.S., Samanta, S.: A controlled protocol for asymmetric cyclic (a→B→C→a) quantum state transfer between three parties [J]. Phys. Scr. 95(1), 015101 (2019)

    ADS  Google Scholar 

  57. Kaur, S., Priyanka, J., Gill, S.: Multidirectional quantum controlled teleportation in noisy environment. Int. J. Theor. Phys. 62(249), 249 (2023)

    MathSciNet  Google Scholar 

  58. Ahmadkhaniha, A., Mafi, Y., Kazemikhah, P., Aghababa, H., Barati, M., Kolahdouz, M.: Enhancing quantum teleportation: an enable-based protocol exploiting distributed quantum gates. Opt. Quant. Electron. 55(12), 1079 (2023)

    Google Scholar 

Download references

Funding

The authors does not receive support from any organization for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Simranjot Kaur contributed to conceptualization, methodology, review, writing & editing, Jawahar Lal contributed to review, writing & editing, Savita Gill contributed to validation & supervision.

Corresponding author

Correspondence to Savita Gill.

Ethics declarations

Conflict of interest

All authors declare that they do not have any commercial or associative interest that represents a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Lal, J. & Gill, S. Asymmetric controlled cyclic quantum teleportation of two, three and four qubit states with optimal quantum resources. Quantum Inf Process 23, 141 (2024). https://doi.org/10.1007/s11128-024-04345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04345-6

Keywords

Navigation