Skip to main content
Log in

Right Ventricle-Pulmonary Artery Coupling in Patients Undergoing Cardiac Interventions

  • Congenital Heart Disease (RA Krasuski and G Fleming, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize the fundamentals of RV-PA coupling, its non-invasive means of measurement, and contemporary understanding of RV-PA coupling in cardiac surgery, cardiac interventions, and congenital heart disease.

Recent Findings

The need for more accessible clinical means of evaluation of RV-PA coupling has driven researchers to investigate surrogates using cardiac MRI, echocardiography, and right-sided pressure measurements in patients undergoing cardiac surgery/interventions, as well as patients with congenital heart disease. Recent research has aimed to validate these alternative means against the gold standard, as well as establish cut-off values predictive of morbidity and/or mortality. This emerging evidence lays the groundwork for identifying appropriate RV-PA coupling surrogates and integrating them into perioperative clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Del Rio JM, Grecu L, Nicoara A. Right ventricular function in left heart disease. Semin Cardiothorac Vasc Anesth. 2019;23(1):88–107. https://doi.org/10.1177/1089253218799345.

    Article  PubMed  Google Scholar 

  2. Haddad F, Couture P, Tousignant C, Denault AY. The right ventricle in cardiac surgery, a perioperative perspective: II. Pathophysiology, clinical importance, and management. Anesth Analg. 2009;108(2):422–33. https://doi.org/10.1213/ane.0b013e31818d8b92.

    Article  PubMed  Google Scholar 

  3. Kukulski T, She L, Racine N, et al. Implication of right ventricular dysfunction on long-term outcome in patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting with or without surgical ventricular reconstruction. J Thorac Cardiovasc Surg. 2015;149(5):1312–21. https://doi.org/10.1016/j.jtcvs.2014.09.117.

    Article  PubMed  Google Scholar 

  4. Peyrou J, Chauvel C, Pathak A, Simon M, Dehant P, Abergel E. Preoperative right ventricular dysfunction is a strong predictor of 3 years survival after cardiac surgery. Clin Res Cardiol. 2017;106(9):734–42. https://doi.org/10.1007/s00392-017-1117-y.

    Article  PubMed  Google Scholar 

  5. Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary process. Circ Res. 1991;68(6):1495–500;68(6):1495–500. https://doi.org/10.1161/01.res.68.6.1495.

    Article  CAS  PubMed  Google Scholar 

  6. West JB. Role of the fragility of the pulmonary blood-gas barrier in the evolution of the pulmonary circulation. Am J Physiol Regul Integr Comp Physiol. 2013;304(3):R171–6. https://doi.org/10.1152/ajpregu.00444.2012.

    Article  CAS  PubMed  Google Scholar 

  7. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA. Right ventricular myocardium derives from the anterior heart field. Circ Res. 2004;95(3):261–8. https://doi.org/10.1161/01.Res.0000136815.73623.Be.

    Article  CAS  PubMed  Google Scholar 

  8. Frank O. Die wirkung von digitalis (helleborein) auf das herz. 1898.

  9. Baan J, Jong TT, Kerkhof PL, et al. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res. 1981;15(6):328–34. https://doi.org/10.1093/cvr/15.6.328.

    Article  CAS  PubMed  Google Scholar 

  10. Baan J, van der Velde ET, de Bruin HG, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70(5):812–23. https://doi.org/10.1161/01.cir.70.5.812.

    Article  CAS  PubMed  Google Scholar 

  11. Burkhoff D, van der Velde E, Kass D, Baan J, Maughan WL, Sagawa K. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation. 1985;72(2):440–7. https://doi.org/10.1161/01.cir.72.2.440.

    Article  CAS  PubMed  Google Scholar 

  12. Piene H. Interaction between the right heart ventricle and its arterial load: a quantitative solution. Am J Physiol. 1980;238(6):H932–7. https://doi.org/10.1152/ajpheart.1980.238.6.H932.

    Article  CAS  PubMed  Google Scholar 

  13. Piene H, Sund T. Flow and power output of right ventricle facing load with variable input impedance. Am J Physiol. 1979;237(2):H125–30. https://doi.org/10.1152/ajpheart.1979.237.2.H125.

    Article  CAS  PubMed  Google Scholar 

  14. Abel FL, Waldhausen JA. Effects of alterations in pulmonary vascular resistance on right ventricular function. J Thorac Cardiovasc Surg. 1967;54(6):886–94.

    Article  CAS  PubMed  Google Scholar 

  15. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350(19):1953–9. https://doi.org/10.1056/NEJMoa032566.

    Article  CAS  PubMed  Google Scholar 

  16. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245(5 Pt 1):H773–80. https://doi.org/10.1152/ajpheart.1983.245.5.H773.

    Article  CAS  PubMed  Google Scholar 

  17. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56(4):586–95. https://doi.org/10.1161/01.res.56.4.586.

    Article  CAS  PubMed  Google Scholar 

  18. Kelly RP, Ting CT, Yang TM, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86(2):513–21. https://doi.org/10.1161/01.cir.86.2.513.

    Article  CAS  PubMed  Google Scholar 

  19. Sagawa K. Cardiac contraction and the pressure-volume relationship. Oxford University Press; 1988.

  20. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250(6 Pt 2):R1021–7. https://doi.org/10.1152/ajpregu.1986.250.6.R1021.

    Article  CAS  PubMed  Google Scholar 

  21. • Brener MI, Masoumi A, Ng VG, et al. Invasive right ventricular pressure-volume analysis: basic principles, clinical applications, and practical recommendations. Circ Heart Fail. 2022;15(1):e009101;15(1):e009101. https://doi.org/10.1161/circheartfailure.121.009101. This article serves as an excellent review of conductance catheter structure and function. There is also a review of pressure-volume loop measurement, analysis, and limitations.

    Article  PubMed  Google Scholar 

  22. Sunagawa K, Yamada A, Senda Y, et al. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng. 1980;27(6):299–305. https://doi.org/10.1109/tbme.1980.326737.

    Article  CAS  PubMed  Google Scholar 

  23. Richter MJ, Peters D, Ghofrani HA, et al. Evaluation and prognostic relevance of right ventricular-arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med. 2020;201(1):116–9. https://doi.org/10.1164/rccm.201906-1195LE.

    Article  PubMed  Google Scholar 

  24. Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol. 2003;284(5):H1625–30. https://doi.org/10.1152/ajpheart.01023.2002.

    Article  CAS  PubMed  Google Scholar 

  25. Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation. 1996;94(10):2497–506. https://doi.org/10.1161/01.cir.94.10.2497.

    Article  CAS  PubMed  Google Scholar 

  26. Singh A, Huang X, Dai L, et al. Right ventricular function is reduced during cardiac surgery independent of procedural characteristics, reoperative status, or pericardiotomy. J Thorac Cardiovasc Surg. 2020;159(4):1430-1438.e4. https://doi.org/10.1016/j.jtcvs.2019.04.035.

    Article  PubMed  Google Scholar 

  27. Lahm T, Douglas IS, Archer SL, et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med. 2018;198(4):e15–43. https://doi.org/10.1164/rccm.201806-1160ST.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Varma PK, Jose RL, Krishna N, Srimurugan B, Valooran GJ, Jayant A. Perioperative right ventricular function and dysfunction in adult cardiac surgery-focused review (part 1—anatomy, pathophysiology, and diagnosis). Indian J Thorac Cardiovasc Surg. 2022;38(1):45–57. https://doi.org/10.1007/s12055-021-01240-y.

    Article  PubMed  Google Scholar 

  29. Gaynor SL, Maniar HS, Bloch JB, Steendijk P, Moon MR. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation. 2005;112(9 Suppl):I212–8. https://doi.org/10.1161/circulationaha.104.517789.

    Article  PubMed  Google Scholar 

  30. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129(9):1033–44. https://doi.org/10.1161/circulationaha.113.001375.

    Article  PubMed  Google Scholar 

  31. Amsallem M, Mercier O, Kobayashi Y, Moneghetti K, Haddad F. Forgotten no more: a focused update on the right ventricle in cardiovascular disease. JACC Heart Fail. 2018;6(11):891–903. https://doi.org/10.1016/j.jchf.2018.05.022.

    Article  PubMed  Google Scholar 

  32. Spruijt OA, de Man FS, Groepenhoff H, et al. The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med. 2015;191(9):1050–7. https://doi.org/10.1164/rccm.201412-2271OC.

    Article  CAS  PubMed  Google Scholar 

  33. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804. https://doi.org/10.1378/chest.08-0492.

    Article  CAS  PubMed  Google Scholar 

  34. Houston BA, Brittain EL, Tedford RJ. Right ventricular failure. N Engl J Med. 2023;388(12):1111–25. https://doi.org/10.1056/NEJMra2207410.

    Article  CAS  PubMed  Google Scholar 

  35. Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53(1). https://doi.org/10.1183/13993003.01900-2018.

  36. Axell RG, Messer SJ, White PA, et al. Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease. Physiol Rep. Apr 2017;5(7): https://doi.org/10.14814/phy2.13227

  37. Fourie PR, Coetzee AR, Bolliger CT. Pulmonary artery compliance: its role in right ventricular-arterial coupling. Cardiovasc Res. 1992;26(9):839–44. https://doi.org/10.1093/cvr/26.9.839.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu S, Simpson CE, Houston BA, et al. Multi-beat right ventricular-arterial coupling predicts clinical worsening in pulmonary arterial hypertension. J Am Heart Assoc. 2020;9(10):e016031. https://doi.org/10.1161/jaha.119.016031.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghuysen A, Lambermont B, Kolh P, et al. Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock. 2008;29(2):197–204. https://doi.org/10.1097/SHK.0b013e318070c790.

    Article  PubMed  Google Scholar 

  40. Tello K, Dalmer A, Axmann J, et al. Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Heart Fail. 2019;12(1): e005512. https://doi.org/10.1161/circheartfailure.118.005512.

    Article  PubMed  Google Scholar 

  41. McCabe C, White PA, Hoole SP, et al. Right ventricular dysfunction in chronic thromboembolic obstruction of the pulmonary artery: a pressure-volume study using the conductance catheter. J Appl Physiol (1985). 2014;116(4):355–63. https://doi.org/10.1152/japplphysiol.01123.2013.

    Article  PubMed  Google Scholar 

  42. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39-e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  Google Scholar 

  43. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69(2):236–43. https://doi.org/10.1016/j.jacc.2016.10.047.

    Article  PubMed  Google Scholar 

  44. Trip P, Kind T, van de Veerdonk MC, et al. Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J Heart Lung Transplant. 2013;32(1):50–5. https://doi.org/10.1016/j.healun.2012.09.022.

    Article  PubMed  Google Scholar 

  45. Tello K, Richter MJ, Axmann J, et al. More on single-beat estimation of right ventriculoarterial coupling in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2018;198(6):816–8. https://doi.org/10.1164/rccm.201802-0283LE.

    Article  PubMed  Google Scholar 

  46. Heerdt PM, Kheyfets V, Charania S, Elassal A, Singh I. A pressure-based single beat method for estimation of right ventricular ejection fraction: proof of concept. Eur Respir J. 2020;55(3). https://doi.org/10.1183/13993003.01635-2019

  47. Muraru D, Spadotto V, Cecchetto A, et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging. 2016;17(11):1279–89. https://doi.org/10.1093/ehjci/jev309.

    Article  PubMed  Google Scholar 

  48. Vanderpool RR, Pinsky MR, Naeije R, et al. RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart. 2015;101(1):37–43. https://doi.org/10.1136/heartjnl-2014-306142.

    Article  PubMed  Google Scholar 

  49. Aubert R, Venner C, Huttin O, et al. Three-dimensional echocardiography for the assessment of right ventriculo-arterial coupling. J Am Soc Echocardiogr. 2018;31(8):905–15. https://doi.org/10.1016/j.echo.2018.04.013.

    Article  PubMed  Google Scholar 

  50. Guazzi M, Bandera F, Pelissero G, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol. 2013;305(9):H1373–81. https://doi.org/10.1152/ajpheart.00157.2013.

    Article  CAS  PubMed  Google Scholar 

  51. Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. 2019;12(9): e009047. https://doi.org/10.1161/circimaging.119.009047.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43(38):3618–731. https://doi.org/10.1093/eurheartj/ehac237.

    Article  CAS  PubMed  Google Scholar 

  53. Tello K, Axmann J, Ghofrani HA, et al. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int J Cardiol. 2018;266:229–35. https://doi.org/10.1016/j.ijcard.2018.01.053.

    Article  PubMed  Google Scholar 

  54. Unlu S, Bezy S, Cvijic M, Duchenne J, Delcroix M, Voigt JU. Right ventricular strain related to pulmonary artery pressure predicts clinical outcome in patients with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging. 2023;24(5):635–42. https://doi.org/10.1093/ehjci/jeac136.

    Article  PubMed  Google Scholar 

  55. Richter MJ, Rako ZA, Tello K. Ratio between right ventricular strain and systolic pulmonary artery pressure as a surrogate for right ventricular to pulmonary arterial coupling: validation against the gold standard. Eur Heart J Cardiovasc Imaging. 2023;24(3):e50–2. https://doi.org/10.1093/ehjci/jeac253.

    Article  PubMed  Google Scholar 

  56. Nochioka K, Querejeta Roca G, Claggett B, et al. Right ventricular function, right ventricular-pulmonary artery coupling, and heart failure risk in 4 US communities: the Atherosclerosis Risk in Communities (ARIC) study. JAMA Cardiol. 2018;3(10):939–48. https://doi.org/10.1001/jamacardio.2018.2454.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mehra MR, Naka Y, Uriel N, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376(5):440–50. https://doi.org/10.1056/NEJMoa1610426.

    Article  PubMed  Google Scholar 

  58. Frankfurter C, Molinero M, Vishram-Nielsen JKK, et al. Predicting the risk of right ventricular failure in patients undergoing left ventricular assist device implantation: a systematic review. Circ Heart Fail. 2020;13(10): e006994. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006994.

    Article  PubMed  Google Scholar 

  59. Nicoara A, Wright MC, Rosenkrans D, et al. Predictive capabilities of the European registry for patients with mechanical circulatory support right-sided heart failure risk score after left ventricular assist device implantation. J Cardiothorac Vasc Anesth. 2022;36(10):3740–6. https://doi.org/10.1053/j.jvca.2022.06.022.

    Article  PubMed  Google Scholar 

  60. Tran T, Muralidhar A, Hunter K, et al. Right ventricular function and cardiopulmonary performance among patients with heart failure supported by durable mechanical circulatory support devices. J Heart Lung Transplant. 2021;40(2):128–37. https://doi.org/10.1016/j.healun.2020.11.009.

    Article  PubMed  Google Scholar 

  61. Brener MI, Hamid NB, Fried JA, et al. Right ventricular pressure-volume analysis during left ventricular assist device speed optimization studies: insights into interventricular interactions and right ventricular failure. J Card Fail. 2021;27(9):991–1001. https://doi.org/10.1016/j.cardfail.2021.04.019.

    Article  PubMed  Google Scholar 

  62. Adamo M, Maccagni G, Fiorina C, et al. Prognostic value of right ventricle to pulmonary artery coupling in transcatheter aortic valve implantation recipients. J Cardiovasc Med (Hagerstown). 2022;23(9):615–22. https://doi.org/10.2459/JCM.0000000000001336.

    Article  PubMed  Google Scholar 

  63. Alwan L, Tomii D, Heg D, et al. Impact of right ventricular-pulmonary arterial coupling on clinical outcomes in patients undergoing transcatheter aortic valve implantation. Cardiovasc Revasc Med. 2023. https://doi.org/10.1016/j.carrev.2023.05.008

  64. • Cahill TJ, Pibarot P, Yu X, et al. Impact of right ventricle-pulmonary artery coupling on clinical outcomes in the PARTNER 3 trial. JACC Cardiovasc Interv. 2022;15(18):1823–1833;15(18):1823–33. https://doi.org/10.1016/j.jcin.2022.07.005. Investigators in this study used echocardiographic means of assessment of RV-PA coupling in patients with severe sortic stenosis randomized to surgical or transcatheter valve replacement, using TAPSE/PASP (PASP estimated using right-ventricular systolic pressure derived from a tricuspid regurgitation jet). A cut-off point of 0.55 was established, and prognostic significance was demonstarted as patients identified as having RV-PA uncoupling had a 2-fold increase in all-cause mortality, stroke, and rehospitalization at two years.

    Article  PubMed  Google Scholar 

  65. Dumitrof LC, Nedelciuc I, Roca M, Crisan-Dabija R, Mihaescu T, Tinica G. The evolution of pulmonary hypertension and its prognostic implications post-TAVI-single center experience. Medicina (Kaunas). 2022;58(9). https://doi.org/10.3390/medicina58091182

  66. Lillo R, Graziani F, Ingrasciotta G, et al. Right ventricle systolic function and right ventricle-pulmonary artery coupling in patients with severe aortic stenosis and the early impact of TAVI. Int J Cardiovasc Imaging. 2022;38(8):1761–70. https://doi.org/10.1007/s10554-022-02569-0.

    Article  PubMed  Google Scholar 

  67. Meucci MC, Malara S, Butcher SC, et al. Evolution and prognostic impact of right ventricular-pulmonary artery coupling after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2023;16(13):1612–21. https://doi.org/10.1016/j.jcin.2023.05.003.

    Article  PubMed  Google Scholar 

  68. Parasca CA, Calin A, Cadil D, et al. Right ventricle to pulmonary artery coupling after transcatheter aortic valve implantation—determinant factors and prognostic impact. Front Cardiovasc Med. 2023;10:1150039. https://doi.org/10.3389/fcvm.2023.1150039.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sultan I, Cardounel A, Abdelkarim I, et al. Right ventricle to pulmonary artery coupling in patients undergoing transcatheter aortic valve implantation. Heart. 2019;105(2):117–21. https://doi.org/10.1136/heartjnl-2018-313385.

    Article  PubMed  Google Scholar 

  70. Raina A, Vaidya A, Gertz ZM, Susan C, Forfia PR. Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Heart Lung Transplant. 2013;32(8):777–83. https://doi.org/10.1016/j.healun.2013.05.004.

    Article  PubMed  Google Scholar 

  71. Brener MI, Lurz P, Hausleiter J, et al. Right ventricular-pulmonary arterial coupling and afterload reserve in patients undergoing transcatheter tricuspid valve repair. J Am Coll Cardiol. 2022;79(5):448–61. https://doi.org/10.1016/j.jacc.2021.11.031.

    Article  PubMed  Google Scholar 

  72. Karam N, Stolz L, Orban M, et al. Impact of right ventricular dysfunction on outcomes after transcatheter edge-to-edge repair for secondary mitral regurgitation. JACC Cardiovasc Imaging. 2021;14(4):768–78. https://doi.org/10.1016/j.jcmg.2020.12.015.

    Article  PubMed  Google Scholar 

  73. Popolo Rubbio A, Testa L, Granata G, et al. Prognostic significance of right ventricle to pulmonary artery coupling in patients with mitral regurgitation treated with the MitraClip system. Catheter Cardiovasc Interv. 2022;99(4):1277–86. https://doi.org/10.1002/ccd.30044.

    Article  PubMed  Google Scholar 

  74. Sert S, Selcuk N, Yildirimturk O, Orhan G. Prognostic value of TAPSE/PASP ratio in right ventricular failure after left ventricular assist device implantation: experience from a tertiary center. Turk Gogus Kalp Damar Cerrahisi Derg. 2022;30(3):334–43. https://doi.org/10.5606/tgkdc.dergisi.2022.23218.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Soesanto AM, Hendiperdana MR, Zahara R, et al. Association between right ventricle-pulmonary artery coupling with in-hospital outcome after triple valve surgery in rheumatic heart disease. J Cardiovasc Echogr Oct-Dec. 2022;32(4):212–7. https://doi.org/10.4103/jcecho.jcecho_57_22.

    Article  Google Scholar 

  76. Hiremath GB, Callahan S, Thatte R, Rockefeller N, Nawaytou T, Redd H, Hussain SV, Brener T. MI. Clinical applications of pressure-volume assessment in congenital heart disease. J Soc Cardiovasc Angiogr Interv. 2023;2(3).

  77. Latus H, Binder W, Kerst G, Hofbeck M, Sieverding L, Apitz C. Right ventricular-pulmonary arterial coupling in patients after repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2013;146(6):1366–72. https://doi.org/10.1016/j.jtcvs.2013.02.039.

    Article  PubMed  Google Scholar 

  78. Sandeep B, Huang X, Li Y, et al. Evaluation of right ventricle pulmonary artery coupling on right ventricular function in post operative tetralogy of Fallot patients underwent for pulmonary valve replacement. J Cardiothorac Surg. 2020;15(1):241. https://doi.org/10.1186/s13019-020-01281-1.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li W, West C, McGhie J, et al. Consensus recommendations for echocardiography in adults with congenital heart defects from the International Society of Adult Congenital Heart Disease (ISACHD). Int J Cardiol. 2018;272:77–83. https://doi.org/10.1016/j.ijcard.2018.07.058.

    Article  PubMed  Google Scholar 

  80. Egbe AC, Kothapalli S, Miranda WR, et al. Assessment of right ventricular-pulmonary arterial coupling in chronic pulmonary regurgitation. Can J Cardiol. 2019;35(7):914–22. https://doi.org/10.1016/j.cjca.2019.03.009.

    Article  PubMed  Google Scholar 

  81. Panaioli E, Birritella L, Graziani F, et al. Right ventricle-pulmonary artery coupling in repaired tetralogy of Fallot with pulmonary regurgitation: clinical implications. Arch Cardiovasc Dis. 2022;115(2):67–77. https://doi.org/10.1016/j.acvd.2021.12.006.

    Article  PubMed  Google Scholar 

  82. Egbe AC, Miranda WR, Said SM, et al. Risk stratification and clinical outcomes after surgical pulmonary valve replacement. Am Heart J. 2018;206:105–12. https://doi.org/10.1016/j.ahj.2018.09.012.

    Article  PubMed  Google Scholar 

  83. Vitarelli A, Miraldi F, Capotosto L, et al. Comprehensive echocardiographic assessment of right ventricular function, pulmonary arterial elastic properties and ventricular-vascular coupling in adult patients with repaired tetralogy of fallot: clinical significance of 3D derived indices. Int J Cardiovasc Imaging. 2023;39(9):1631–41. https://doi.org/10.1007/s10554-023-02857-3.

    Article  PubMed  Google Scholar 

  84. Li M, Wang Y, Li H, et al. A prediction model of simple echocardiographic variables to screen for potentially correctable shunts in adult patients with pulmonary arterial hypertension associated with atrial septal defects: a cross-sectional study. Int J Cardiovasc Imaging. 2021;37(5):1551–62. https://doi.org/10.1007/s10554-020-02128-5.

    Article  PubMed  Google Scholar 

  85. Suzuki M, Matsumoto K, Tanaka Y, et al. Preoperative coupling between right ventricle and pulmonary vasculature is an important determinant of residual symptoms after the closure of atrial septal defect. Int J Cardiovasc Imaging. 2021;37(10):2931–41. https://doi.org/10.1007/s10554-021-02282-4.

    Article  PubMed  Google Scholar 

  86. Rao PS. Single ventricle—a comprehensive review. Children (Basel).  2021;8(6). https://doi.org/10.3390/children8060441

  87. Steflik D, Butts RJ, Baker GH, et al. A preliminary comparison of two-dimensional speckle tracking echocardiography and pressure-volume loop analysis in patients with Fontan physiology: the role of ventricular morphology. Echocardiography. 2017;34(9):1353–9. https://doi.org/10.1111/echo.13641.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Herberg U, Gatzweiler E, Breuer T, Breuer J. Ventricular pressure-volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study. Clin Res Cardiol. 2013;102(6):427–38. https://doi.org/10.1007/s00392-013-0548-3.

    Article  PubMed  Google Scholar 

  89. • Richter MJ, Yogeswaran A, Husain-Syed F, et al. A novel non-invasive and echocardiography-derived method for quantification of right ventricular pressure-volume loops. Eur Heart J Cardiovasc Imaging. 2022;23(4):498–507. https://doi.org/10.1093/ehjci/jeab038. This proof-of-concept study by Richter et al demonstrates methods to create pressure-volume loops using echocardiography alone, as well as with echocardiography and RV pressure monitoring.

    Article  PubMed  Google Scholar 

  90. Kim D, Park Y, Choi KH, et al. Prognostic implication of RV coupling to pulmonary circulation for successful weaning from extracorporeal membrane oxygenation. JACC Cardiovasc Imaging. 2021;14(8):1523–31. https://doi.org/10.1016/j.jcmg.2021.02.018.

    Article  PubMed  Google Scholar 

  91. Cheng S, Li VW, So EK, Cheung YF. Right ventricular-pulmonary arterial coupling in repaired tetralogy of Fallot. Pediatr Cardiol. 2022;43(1):207–17. https://doi.org/10.1007/s00246-021-02719-6.

    Article  PubMed  Google Scholar 

  92. Oh J, Song IK, Cho J, et al. Acute change in ventricular contractility-load coupling after corrective surgery for congenital heart defect: a retrospective cohort study. Pediatr Cardiol. 2019;40(8):1618–26. https://doi.org/10.1007/s00246-019-02195-z.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Egbe AC, Miranda WR, Pellikka PA, et al. Right ventricular and pulmonary vascular function indices for risk stratification of patients with pulmonary regurgitation. Congenit Heart Dis. 2019;14(4):657–64. https://doi.org/10.1111/chd.12768.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lee SH, Shin YR, Kim DY, et al. Clinical significance of right ventricular-pulmonary arterial coupling in patients with tricuspid regurgitation before closure of atrial septal defect. Front Cardiovasc Med. 2022;9: 896711. https://doi.org/10.3389/fcvm.2022.896711.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Butts RJ, Chowdhury SM, Buckley J, et al. Comparison of echocardiographic and pressure-volume loop indices of systolic function in patients with single ventricle physiology: a preliminary report. Congenit Heart Dis Jan-Feb. 2015;10(1):E17-24. https://doi.org/10.1111/chd.12191.

    Article  Google Scholar 

  96. Schlangen J, Fischer G, Petko C, et al. Arterial elastance and its impact on intrinsic right ventricular function in palliated hypoplastic left heart syndrome. Int J Cardiol. 2013;168(6):5385–9. https://doi.org/10.1016/j.ijcard.2013.08.052.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript -C.C.: Wrote the abstract, introduction, basics of RV-PA coupling, and RV dysfunction and failure. Created outline to establish overall content of article, provided editing and review of all sections. Created Table 1, Fig 1 A&B, Fig 2. Modified Fig 1 C&D and obtained permission. -J.A.: Authored the section on congenital heart disease. -K.S.: Created Tables 2 and 3 -K.H.: Provided insights into the mechanisms of RV-PA coupling and methods of measurement, assisted with creation of Fig 2C. -A.C.: Provided methodological guidance for evaluation of the literature, and synthesis of the body of literature examined. -M.P.: Reviewed content for accuracy and relevance, provided critique of analysis of the literature and suggested additional literature for inclusion. -A.N.: Authored sections alternative methods of assessing RV-PA coupling, RV-PA coupling in patients undergoing cardiac interventions, emerging information and conclusion. Combined all sections. Provided high-level direction, mentorship, and oversight of all sections. She also used her expertise in RV:PA coupling to ensure the article accurately reflects the fundamentals of RV:PA coupling relevant to the clinician, the latest research, and covered gaps in knowledge.

Corresponding author

Correspondence to Crosby Culp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

Jon Andrews reports personal fees from Wolters Kluwer Health, outside the submitted work. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article contains a description of an ongoing study being performed by the authors involving human subjects, and a graphical depiction of the data obtained from a single patient. This study was approved by the Institutional Review Board at Duke University Hospital. All patients enrolled in the study signed informed consent forms according to institutional protocols approved through review in the Duke University Hospital System Human Research Protection Program.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culp, C., Andrews, J., Sun, K.W. et al. Right Ventricle-Pulmonary Artery Coupling in Patients Undergoing Cardiac Interventions. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02052-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02052-3

Keywords

Navigation