Skip to main content
Log in

Nanobiotic Formulations utilizing Quinoline-based-Triazole functionalized Carbon Quantum Dots via Click Chemistry for Combatting Clinical-Resistant Bacterial Pathogens

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Therapeutic options for preventing the trajectory of multi-drug resistance bacterial pathogens could rely on the effort to design a novel technique to develop a potent antimicrobial agent to counter the key issue. To curb the current outbreak, we synthesized first generation of antimicrobial amine-modified carbon quantum dots, CQDs–NH2 as carbon precursors followed by hydrothermal carbonization of ethylenediamine/citric acid, and postmodified with propargyl alcohol (CQDs-1) and quinoline derivative; 8-hydroxy quinoline (CQDs-2) through Cu(I)-catalyzed azide-alkyne cycloaddition. The novel clicked 1,2,3-triazole functionalized CQDs–NH2 templates, were evaluated against standard Gram-positive; Staphylococcus aureus (S. aureus), and Gram-negative; Escherichia coli (E. coli), MRSA, along with clinical-resistant diabetic foot PUS swab isolated bacterial pathogens by 96-well method as well as agar-well diffusion method, to unleased the potential antibacterial activity. 1,2,3-triazole functionalized CQDs–NH2 template showed enhanced antibacterial activity against distinct bacterial strains, with minimum inhibitory concentration for standard bacteria, MRSA-bacteria, and clinical resistant bacterial pathogens in the range of 0.25–8, 64–128, and 128–256 μg mL−1 respectively. This nanobiotic template displays good potential through the hybridization of 1,2,3-triazole with antibacterial pharmacophores CQDs–NH2 and quinoline, to overcome drug resistance, reduce toxicity, and improve pharmacokinetic profiles. The findings of this study might have a favorable impact on antibiotic pharmacodynamics and, as a result, nanobiotic dosing regimens as well as clinical outcomes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. de Breij A, Riool M, Cordfunke RA et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044

    Article  PubMed  Google Scholar 

  2. Yao J, Zou P, Cui Y et al (2023) Recent advances in strategies to combat bacterial drug resistance: antimicrobial materials and drug delivery systems. Pharmaceutics 15:1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harikumar G, Krishanan K (2022) The growing menace of drug resistant pathogens and recent strategies to overcome drug resistance: a review. J King Saud Univ sci 34:101979

    Article  Google Scholar 

  4. Yadav N, Mudgal D, Mishra S et al (2023) Development of ionic liquid-capped carbon dots derived from Tecoma stans (L.) Juss. ex Kunth: combatting bacterial pathogens in diabetic foot ulcer pus swabs, targeting both standard and multi-drug resistant strains. S Afr J Bot 163:412–426

    Article  CAS  Google Scholar 

  5. Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB et al (2023) Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Braz J Biol 84:264946

    Article  Google Scholar 

  6. Bennour I, Ramos MN, Nuez-Martínez M et al (2022) Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalt Trans 51:7188–7209

    Article  CAS  Google Scholar 

  7. Ngo HL, Mishra DK, Mishra V, Truong CC (2021) Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem Eng Sci 229:116142

    Article  Google Scholar 

  8. Gupta SS, Mishra V, Das MM et al (2021) Amino acid derived biopolymers: recent advances and biomedical applications. Int J Biol Macromol 188:542–567

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Yang M (2022) Antimicrobial peptides: from design to clinical application. Antibiotics 11:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mei JA, Johnson W, Kinn B et al (2022) Antimicrobial activity of a triple antibiotic combination toward ocular Pseudomonas aeruginosa clinical isolates. Transl Vis Sci Technol 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie M, Chen K, Chan EW-C, Chen S (2022) Synergistic antimicrobial effect of colistin in combination with econazole against multidrug-resistant acinetobacter baumannii and its persisters. Microbiol Spectr 10:e00937-e1022

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee D, Zou H, Liu S et al (2016) Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol 11:643–650

    Article  CAS  PubMed  Google Scholar 

  13. Batalha IL, Bernut A, Schiebler M et al (2019) Polymeric nanobiotics as a novel treatment for mycobacterial infections. J Control Release 314:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vestergaard M, Paulander W, Marvig RL et al (2016) Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int J Antimicrob Agents 47:48–55

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Shu Y, Zhu F et al (2021) Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: a systematic review and network. J Glob Antimicrob Resist 24:136–147

    Article  CAS  PubMed  Google Scholar 

  16. Ardebili A, Izanloo A, Rastegar M (2023) Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 21:387–429

    Article  CAS  PubMed  Google Scholar 

  17. Abdallah EM, Alhatlani BY, de Paula MR, Martins CHG (2023) Back to nature: medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants 12:3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao C, Deng B, Chen G et al (2016) Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res 9:963–973

    Article  CAS  Google Scholar 

  19. Dey D, Chowdhury S, Sen R (2023) Insight into recent advances on nanotechnology-mediated removal of antibiotic resistant bacteria and genes. J Water Process Eng 52:103535

    Article  Google Scholar 

  20. Brar B, Marwaha S, Poonia AK et al (2023) Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 205:62

    Article  CAS  PubMed  Google Scholar 

  21. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  PubMed  Google Scholar 

  22. Yadav N, Gaikwad RP, Mishra V, Gawande MB (2022) Synthesis and photocatalytic applications of functionalized carbon quantum dots. Bull Chem Soc Jpn 95:1638–1679

    Article  CAS  Google Scholar 

  23. Yadav N, Mudgal D, Mishra V (2023) In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection. Anal Chim Acta 1272:341502

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    Article  CAS  Google Scholar 

  25. Thakur M, Pandey S, Mewada A et al (2014) Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Deliv. https://doi.org/10.1155/2014/282193

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seth S, Rathinasabapathi P, Selvarajan E et al (2023) Quantum dots as antibacterial agents. Carbon and graphene quantum dots for biomedical applications. Elsevier, pp 119–128

    Chapter  Google Scholar 

  27. Mishra S, Das K, Chatterjee S et al (2023) Facile and green synthesis of novel fluorescent carbon quantum dots and their silver heterostructure: an in vitro anticancer activity and imaging on colorectal carcinoma. ACS Omega 8:4566–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar A, Yadav AK, Gupta D, Mishra V (2023) Recent advancements in triazole-based click chemistry in cancer drug discovery and development. SynOpen 7:186–208

    Article  CAS  Google Scholar 

  29. Li X, Xiong Y (2022) Application of “Click” chemistry in biomedical hydrogels. ACS Omega 7:36918–36928. https://doi.org/10.1021/acsomega.2c03931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee S, Kumar N, Sehrawat H et al (2021) Click triazole as a linker for drug repurposing against SARs-CoV-2: a greener approach in race to find COVID-19 therapeutic. Curr Res Green Sustain Chem 4:100064

    Article  CAS  Google Scholar 

  31. Mishra V, Kumar R (2019) Cyclic polymer of N-vinylpyrrolidone via atrp protocol: kinetic study and concentration effect of polymer on click chemistry in solution. Polym Sci Ser B 61:753–761

    Article  Google Scholar 

  32. Yadav N, Mudgal D, Anand R et al (2022) Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int J Biol Macromol 220:537–572

    Article  CAS  PubMed  Google Scholar 

  33. Mudgal D, Singh RP, Yadav N et al (2023) Exploring the catalytic efficiency of copper-doped magnetic carbon aerogel towards the coupling reaction of isatin oxime with phenylboronic acid derivatives. SynOpen 7:570–579

    Article  CAS  Google Scholar 

  34. Mishra V, Jung S-H, Park JM et al (2013) Triazole-containing hydrogels for time-dependent sustained drug release. Macromol Rapid Commun 35:442–446

    Article  PubMed  Google Scholar 

  35. Mishra V, Jung S-H, Jeong HM, Lee H (2014) Thermoresponsive ureido-derivatized polymers: the effect of quaternization on UCST properties. Polym Chem 5:2411–2416

    Article  CAS  Google Scholar 

  36. Salma U, Ahmad S, Alam MZ, Khan SA (2023) A review: synthetic approaches and biological applications of triazole derivatives. J Mol Struct. https://doi.org/10.1016/j.molstruc.2023.137240

    Article  Google Scholar 

  37. Insuasty D, Vidal O, Bernal A et al (2019) Antimicrobial activity of quinoline-based hydroxyimidazolium hybrids. Antibiotics 8:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nehra N, Tittal RK, Ghule VD (2021) 1, 2, 3-triazoles of 8-hydroxyquinoline and hbt: synthesis and studies (DNA binding, antimicrobial, molecular docking, ADME, and DFT). ACS Omega 6:27089–27100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel KB, Kumari P (2022) A review: structure-activity relationship and antibacterial activities of quinoline based hybrids. J Mol Struct 1268:133634

    Article  CAS  Google Scholar 

  40. Bozorov K, Zhao J, Aisa HA (2019) 1,2,3-triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorganic Med Chem 27:3511–3531. https://doi.org/10.1016/j.bmc.2019.07.005

    Article  CAS  Google Scholar 

  41. Kumar A, Lal K, Kumar L et al (2022) Phenylhydrazone linked 1, 2, 3-triazole hybrids: synthesis, antimicrobial evaluation and docking studies as dual inhibitors of DNA gyrase and lanosterol 14-α demethylase. Res Chem Intermed 48:5089–5111

    Article  CAS  Google Scholar 

  42. Tian G, Song Q, Liu Z et al (2023) Recent advances in 1, 2, 3-and 1, 2, 4-triazole hybrids as antimicrobials and their SAR: a critical review. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2023.115603

    Article  PubMed  Google Scholar 

  43. Gao F, Xiao J, Huang G (2019) Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 184:111744

    Article  CAS  PubMed  Google Scholar 

  44. Huang S, Yang E, Yao J et al (2018) Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and l-cysteine in complex biological fluids and living cells. Anal Chim Acta 1035:192–202

    Article  CAS  PubMed  Google Scholar 

  45. Łoczechin A, Séron K, Barras A et al (2019) Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces 11:42964–42974

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cayuela A, Carrillo-Carrión C, Soriano ML et al (2016) One-step synthesis and characterization of N-doped carbon nanodots for sensing in organic media. Anal Chem 88:3178–3185

    Article  CAS  PubMed  Google Scholar 

  47. Borgati TF, Alves RB, Teixeira RR et al (2013) Synthesis and phytotoxic activity of 1, 2, 3-triazole derivatives. J Braz Chem Soc 24:953–961

    CAS  Google Scholar 

  48. Alarfaj NA, El-Tohamy MF, Oraby HF (2018) CA 19–9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite. Int J Mol Sci 19:1162

    Article  PubMed  PubMed Central  Google Scholar 

  49. Oza G, Ravichandran M, Merupo V-I et al (2016) Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci Rep 6:1–9

    Article  Google Scholar 

  50. Yadav N, Mudgal D, Mishra A et al (2024) Harnessing fluorescent carbon quantum dots from natural resource for advancing sweat latent fingerprint recognition with machine learning algorithms for enhanced human identification. PLoS ONE 19:e0296270. https://doi.org/10.1371/journal.pone.0296270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ocsoy I, Temiz M, Celik C et al (2017) A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. J Mol Liq 227:147–152

    Article  CAS  Google Scholar 

  52. Xu W-P, Zhang L-C, Li J-P et al (2011) Facile synthesis of silver@ graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21:4593–4597

    Article  CAS  Google Scholar 

  53. Hui L, Huang J, Chen G et al (2016) Antibacterial property of graphene quantum dots (both source material and bacterial shape matter). ACS Appl Mater Interfaces 8:20–25

    Article  CAS  PubMed  Google Scholar 

  54. Kadian S, Manik G, Das N et al (2020) Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver–sulfur doped graphene quantum dot (Ag@ S-GQDs) nanocomposites. J Mater Chem B 8:3028–3037

    Article  CAS  PubMed  Google Scholar 

  55. Wang H, Song Z, Gu J et al (2019) Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomater Sci Eng 5:4739–4749

    Article  CAS  PubMed  Google Scholar 

  56. Hao X, Huang L, Zhao C et al (2021) Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater Sci Eng C 123:111971

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VM duly acknowledge the Science and Engineering Research Board, New Delhi to support financially in the form of TARE project (File No.-TAR/2022/000673) to, Amity University Uttar Pradesh, Noida, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 457 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Mudgal, D. & Mishra, V. Nanobiotic Formulations utilizing Quinoline-based-Triazole functionalized Carbon Quantum Dots via Click Chemistry for Combatting Clinical-Resistant Bacterial Pathogens. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01266-x

Keywords

Navigation