Skip to main content
Log in

Role of Multi-scale Hierarchical Structures in Regulating Wetting State and Wetting Properties of Structured Surfaces

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces. Through theoretical analysis and experimental exploration, we have found that in addition to this wettability structure amplification effect, the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie–Baxter and Wenzel wetting regions. This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure. The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity, superhydrophilicity and the transition between these two extreme wetting properties, as well as stabilizing the Cassie–Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lafuma, A., & Quere, D. (2003). Superhydrophobic states. Nature Materials, 2, 457–460.

    Article  Google Scholar 

  2. Marmur, A. (2003). Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir, 19, 8343–8348.

    Article  Google Scholar 

  3. Patankar, N. A. (2003). On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 19, 1249–1253.

    Article  Google Scholar 

  4. Quéré, D. (2008). Wetting and Roughness. Annual Review of Materials Research, 38, 71–99.

    Article  Google Scholar 

  5. Bormashenko, E. (2015). Progress in understanding wetting transitions on rough surfaces. Advances in Colloid and Interface Science, 222, 92–103.

    Article  Google Scholar 

  6. Jiang, Y., Lian, J. S., Jiang, Z. H., Li, Y. C., & Wen, C. E. (2020). Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Advances in Colloid and Interface Science, 278, 102136.

    Article  Google Scholar 

  7. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28, 988–994.

    Article  Google Scholar 

  8. Cassie, A., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday society, 40, 546–551.

    Article  Google Scholar 

  9. Marmur, A. (2008). From hygrophilic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir, 24, 7573–7579.

    Article  Google Scholar 

  10. Milne, A. J., & Amirfazli, A. (2012). The Cassie equation: How it is meant to be used. Advances in Colloid and Interface Science, 170, 48–55.

    Article  Google Scholar 

  11. Bico, J., Thiele, U., & Quéré, D. (2002). Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 41–46.

    Article  Google Scholar 

  12. He, B., Patankar, N. A., & Lee, J. (2003). Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 19, 4999–5003.

    Article  Google Scholar 

  13. Ishino, C., Okumura, K., & Quéré, D. (2004). Wetting transitions on rough surfaces. EPL (Europhysics Letters), 68, 419.

    Article  Google Scholar 

  14. Patankar, N. A. (2004). Transition between superhydrophobic states on rough surfaces. Langmuir, 20, 7097–7102.

    Article  Google Scholar 

  15. Cao, L., Hu, H. H., & Gao, D. (2007). Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir, 23, 4310–4314.

    Article  Google Scholar 

  16. Im, M., Im, H., Lee, J. H., Yoon, J. B., & Choi, Y. K. (2010). A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter, 6, 1401.

    Article  Google Scholar 

  17. Tuteja, A., Choi, W., McKinley, G. H., Cohen, R. E., & Rubner, M. F. (2008). Design parameters for superhydrophobicity and superoleophobicity. MRS bulletin, 33, 752–758.

    Article  Google Scholar 

  18. Tuteja, A., Choi, W., Ma, M., Mabry, J. M., Mazzella, S. A., Rutledge, G. C., McKinley, G. H., & Cohen, R. E. (2007). Designing superoleophobic surfaces. Science, 318, 1618–1622.

    Article  Google Scholar 

  19. Tuteja, A., Choi, W., Mabry, J. M., McKinley, G. H., & Cohen, R. E. (2008). Robust omniphobic surfaces. Proceedings of the National Academy of Sciences, 105, 18200–18205.

    Article  Google Scholar 

  20. Liu, T. L., & Kim, C. J. (2014). Turning a surface superrepellent even to completely wetting liquids. Science, 346, 1096–1100.

    Article  Google Scholar 

  21. Teisala, H., & Butt, H. J. (2019). Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir, 35, 10689–10703.

    Article  Google Scholar 

  22. Guo, H. Y., Li, B., & Feng, X. Q. (2016). Stability of Cassie–Baxter wetting states on microstructured surfaces. Physical Review E, 94(4), 042801.

    Article  MathSciNet  Google Scholar 

  23. Zhang, W. L., Wang, D. H., Sun, Z. N., Song, J. N., & Deng, X. (2021). Robust superhydrophobicity: Mechanisms and strategies. Chemical Society Reviews, 50, 4031–4061.

    Article  Google Scholar 

  24. Zheng, Q. S., Yu, Y., & Zhao, Z. H. (2005). Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 21(26), 12207–12212.

    Article  Google Scholar 

  25. Nosonovsky, M. (2007). Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 23(6), 3157–3161.

    Article  Google Scholar 

  26. Li, W., & Amirfazli, A. (2008). Hierarchical structures for natural superhydrophobic surfaces. Soft Matter, 4(3), 462–466.

    Article  Google Scholar 

  27. Bhushan, B., Jung, Y. C., & Koch, K. (2009). Micro-, nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1894), 1631–1672. https://doi.org/10.1098/rsta.2009.0014

    Article  Google Scholar 

  28. Koch, K., Bhushan, B., Jung, Y. C., & Barthlott, W. (2009). Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, 5(7), 1386–1393.

    Article  Google Scholar 

  29. Si, Y., Dong, Z., & Jiang, L. (2018). Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Science, 4(9), 1102–1112.

    Article  Google Scholar 

  30. Zhu, Z., Zheng, S., Peng, S., Zhao, Y., & Tian, Y. (2017). Superlyophilic Interfaces and Their Applications. Advanced Materials, 29(45), 1703120.

    Article  Google Scholar 

  31. Liu, M., Wang, S., & Jiang, L. (2017). Nature-inspired superwettability systems. Nature Reviews Materials, 2(7), 17036.

    Article  Google Scholar 

  32. Jiang, Z. H., Liu, X. L., Li, G., Jiang, Q., & Lian, J. S. (2006). Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Applied Physics Letters, 88(14), 143115.

    Article  Google Scholar 

  33. Meng, K. K., Jiang, Y., Jiang, Z. H., Lian, J. S., & Jiang, Q. (2014). Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 49(9), 3379–3390.

    Article  Google Scholar 

  34. Foadi, F., Brink, G. H. T., Mohammadizadeh, M. R., & Palasantzas, G. (2019). Roughness dependent wettability of sputtered copper thin films: The effect of the local surface slope. Journal of Applied Physics, 125(24), 244307.

    Article  Google Scholar 

  35. Patankar, N. A. (2004). Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir, 20(19), 8209–8213.

    Article  Google Scholar 

  36. Herminghaus, S. (2000). Roughness-induced non-wetting. EPL (Europhysics Letters), 52(2), 165.

    Article  Google Scholar 

  37. Su, Y. W., Ji, B. H., Zhang, K., Gao, H. J., Huang, Y. G., & Hwang, K. (2010). Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir, 26(7), 4984–4989.

    Article  Google Scholar 

  38. Bell, M. S., Shahraz, A., Fichthorn, K. A., & Borhan, A. (2015). Effects of hierarchical surface roughness on droplet contact angle. Langmuir, 31(24), 6752–6762.

    Article  Google Scholar 

  39. Sun, T. L., Wang, G. J., Feng, L., Liu, B. Q., Ma, Y. M., Jiang, L., & Zhu, D. B. (2004). Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie International Edition, 43(3), 357–360.

    Article  Google Scholar 

  40. Lim, H. S., Kwak, D., Lee, D. Y., Lee, S. G., & Cho, K. (2007). UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. Journal of the American Chemical Society, 129(14), 4128–4129.

    Article  Google Scholar 

  41. Xia, F., Zhu, Y., Feng, L., & Jiang, L. (2009). Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. Soft Matter, 5(2), 275–281.

    Article  Google Scholar 

  42. Wang, Y., Ma, K., & Xin, J. H. (2018). Stimuli-responsive bioinspired materials for controllable liquid manipulation: Principles, fabrication, and applications. Advanced Functional Materials, 28(6), 1705128.

    Article  Google Scholar 

  43. Li, X. Y., Jiang, Y., Jiang, Z. H., Li, Y. C., Wen, C. E., & Lian, J. S. (2019). Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface. Applied Surface Science, 492, 349–361.

    Article  Google Scholar 

  44. Shao, Y. L., Zhao, J., Fan, Y., Wan, Z. P., Lu, L. S., Zhang, Z. H., Ming, W. H., & Ren, L. Q. (2020). Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect.” Chemical Engineering Journal, 382, 122989.

    Article  Google Scholar 

  45. Patankar, N. A. (2010). Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach. Langmuir, 26(11), 8941–8945.

    Article  Google Scholar 

  46. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced materials, 14(24), 1857–1860.

    Article  Google Scholar 

  47. Cheng, Y. T., Rodak, D., Wong, C., & Hayden, C. (2006). Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology, 17(5), 1359.

    Article  Google Scholar 

  48. Verho, T., Bower, C., Andrew, P., Franssila, S., Ikkala, O., & Ras, R. H. A. (2011). Mechanically Durable Superhydrophobic Surfaces. Advanced Materials, 23(5), 673–678.

    Article  Google Scholar 

  49. Groten, J., & Rühe, J. (2013). Surfaces with combined microscale and nanoscale structures: A route to mechanically stable superhydrophobic surfaces? Langmuir, 29(11), 3765–3772.

    Article  Google Scholar 

  50. Xiu, Y., Liu, Y., Hess, D. W., & Wong, C. (2010). Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology, 21(15), 155705.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52105303 and 52025053), Natural Science Foundation of Jilin Province (No. 20220101209JC), and Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 52021003).

Author information

Authors and Affiliations

Authors

Contributions

Yue Jiang, Zhihui Zhang, Cuie Wen were involved in conceptualization and methodology; Yue Jiang, Xinyi Li, Zhichao Ma and Nan Lin were involved in data curation, writing-original draft, formal analysis, and visualization; Zhonghao Jiang helped in writing-review and editing; and Luquan Ren contributed to supervision.

Corresponding author

Correspondence to Zhihui Zhang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 6237 KB)

Supplementary file2 (MP4 16409 KB)

Supplementary file3 (MP4 6957 KB)

Supplementary file4 (MP4 9507 KB)

Supplementary file5 (MP4 5633 KB)

Supplementary file6 (PDF 7512 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, X., Ma, Z. et al. Role of Multi-scale Hierarchical Structures in Regulating Wetting State and Wetting Properties of Structured Surfaces. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00507-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00507-5

Keywords

Navigation