Skip to main content
Log in

Numerical approximation of the stochastic Navier–Stokes equations through artificial compressibility

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A constructive numerical approximation of the two-dimensional unsteady stochastic Navier–Stokes equations of an incompressible fluid is proposed via a pseudo-compressibility technique involving a penalty parameter \(\varepsilon \). Space and time are discretized through a finite element approximation and an Euler method. The convergence analysis of the suggested numerical scheme is investigated throughout this paper. It is based on a local monotonicity property permitting the convergence toward the unique strong solution of the stochastic Navier–Stokes equations to occur within the originally introduced probability space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahrens, J., Geveci, B., Law, C.: Paraview: an end-user tool for large data visualization. Vis. Handb. (2005). https://doi.org/10.1016/B978-012387582-2/50038-1

    Article  Google Scholar 

  2. Bonizzoni, F., Kanschat, G.: \(H^1\)-conforming finite element Cochain complexes and commuting quasi-interpolation operators on Cartesian meshes. Calcolo 58(2), 18 (2021). https://doi.org/10.1007/s10092-021-00409-6

    Article  Google Scholar 

  3. Breit, D., Dodgson, A.: Convergence rates for the numerical approximation of the 2D stochastic Navier–Stokes equations. Numer. Math. 147(3), 553–578 (2021). https://doi.org/10.1007/s00211-021-01181-z

    Article  MathSciNet  Google Scholar 

  4. Breit, D., Moyo, T.C., Prohl, A.: Mean square temporal error estimates for the 2D stochastic Navier-Stokes equations with transport noise (2023). Preprint. https://doi.org/10.48550/arXiv.2305.10999

  5. Breit, D., Prohl, A.: Error analysis for 2D stochastic Navier-Stokes equations in bounded domains with Dirichlet data. Found. Comput. Math. (2023). https://doi.org/10.1007/s10208-023-09621-y

  6. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (2007). https://doi.org/10.1007/978-0-387-75934-0

    Book  Google Scholar 

  7. Brzeźniak, Z., Carelli, E., Prohl, A.: Finite element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing. IMAJNA. 33(3), 771–824 (2013). https://doi.org/10.1093/imanum/drs032

    Article  MathSciNet  Google Scholar 

  8. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012). https://doi.org/10.1137/110845008

    Article  MathSciNet  Google Scholar 

  9. Crouzeix, M., Thomée, V.: The stability in \(l_{p}\) and \(w_{p}^{1}\) of the \(l_{2}\)-projection onto finite element function spaces. Math. Comput. 48(178), 521–532 (1987)

    Google Scholar 

  10. De Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004). https://doi.org/10.1007/s00211-003-0494-5

    Article  MathSciNet  Google Scholar 

  11. Douglas, J., Dupont, T., Wahlbin, L.: The stability in Lp of the L2-projection into finite element function spaces. Numer. Math. 23(3), 193–197 (1974). https://doi.org/10.1007/BF01400302

  12. Evans, J.A., Hughes, T.J.: Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. J. Comput. Phys. 241, 141–167 (2013). https://doi.org/10.1016/j.jcp.2013.01.006

    Article  MathSciNet  Google Scholar 

  13. Feng, X., Prohl, A., Vo, L.: Optimally convergent mixed finite element methods for the stochastic Stokes equations. IMAJNA 41(3), 2280–2310 (2021). https://doi.org/10.1093/imanum/drab006

    Article  MathSciNet  Google Scholar 

  14. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). https://doi.org/10.1002/nme.2579

    Article  MathSciNet  Google Scholar 

  15. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-61623-5

    Book  Google Scholar 

  16. Ladyzhenskaya, O.A., Silverman, R.A., Schwartz, J.T., Romain, J.E.: The mathematical theory of viscous incompressible flow. Phys. Today 17(2), 57–58 (1964). https://doi.org/10.1063/1.3051412

    Article  Google Scholar 

  17. Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier–Stokes equations. Appl. Math. Optim. 48(3), 195–210 (2003). https://doi.org/10.1007/s00245-003-0773-7

    Article  MathSciNet  Google Scholar 

  18. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23099-8

    Book  Google Scholar 

  19. Manna, U., Menaldi, J.L., Sritharan, S.: Stochastic 2-D Navier–Stokes equation with artificial compressibility. Commun. Stoch. Anal. (2008). https://doi.org/10.31390/cosa.1.1.10

    Article  Google Scholar 

  20. Menaldi, J.L., Sritharan, S.S.: Stochastic 2-D Navier–Stokes equation. Appl. Math. Optim. (2002). https://doi.org/10.1007/s00245-002-0734-6

    Article  MathSciNet  Google Scholar 

  21. Neilan, M., Sap, D.: Stokes elements on cubic meshes yielding divergence-free approximations. Calcolo 53(3), 263–283 (2016). https://doi.org/10.1007/s10092-015-0148-x

    Article  MathSciNet  Google Scholar 

  22. Pardoux, E.: Equations aux dérivées partielles stochastiques non linéaires monotones. Ph.D. thesis, Université Paris XI (1975)

  23. Reid, J.K., Walsh, J.E.: An elliptic eigenvalue problem for a reentrant region. J. Soc. Ind. Appl. Math. 13(3), 837–850 (1965). https://doi.org/10.1137/0113054

    Article  MathSciNet  Google Scholar 

  24. Shen, J.: On pressure stabilization method and projection method for unsteady Navier-Stokes equations. Adv. Comput. Methods Partial Differ. Equ. (1992) (Citeseer ). https://api.semanticscholar.org/CorpusID:15046267

  25. Shen, J.: On a new pseudocompressibility method for the incompressible Navier–Stokes equations. Appl. Numer. Math. 21, 71–90 (1996). https://doi.org/10.1016/0168-9274(95)00132-8

    Article  MathSciNet  Google Scholar 

  26. Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. de la Soc. Math. de Fr. 96, 115–152 (1968). https://doi.org/10.24033/bsmf.1662

  27. Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (i). Arch. Ration. Mech. Anal. 32(2), 135–153 (1969). https://doi.org/10.1007/BF00247678

    Article  Google Scholar 

  28. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, vol. 343. American Mathematical Society, Providence (2001)

    Google Scholar 

  29. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2007)

    Google Scholar 

Download references

Acknowledgements

The author wants to thank Prof. Ludovic Goudenège (Ecole CentraleSupélec) for his valuable comments, Prof. Andreas Prohl (Tuebingen University) for pointing out a vital issue in the earlier version of this paper, and the anonymous reviewers for rendering the current version clearer and more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jad Doghman.

Ethics declarations

Conflict of interest

The author confirms the absence of any conflict of interest associated with this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by a public grant as part of the Investissement d’avenir project [ANR-11-LABX-0056-LMH, LabEx LMH], and is part of the SIMALIN project [ANR-19-CE40-0016] of the French National Research Agency.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doghman, J. Numerical approximation of the stochastic Navier–Stokes equations through artificial compressibility. Calcolo 61, 23 (2024). https://doi.org/10.1007/s10092-024-00575-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-024-00575-3

Keywords

Mathematics Subject Classification

Navigation