Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T00:01:09.971Z Has data issue: false hasContentIssue false

From a vortex gas to a vortex crystal in instability-driven two-dimensional turbulence

Published online by Cambridge University Press:  08 April 2024

Adrian van Kan*
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
Benjamin Favier
Affiliation:
Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Edgar Knobloch
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
*
Email address for correspondence: avankan@berkeley.edu

Abstract

We study structure formation in two-dimensional turbulence driven by an external force, interpolating between linear instability forcing and random stirring, subject to nonlinear damping. Using extensive direct numerical simulations, we uncover a rich parameter space featuring four distinct branches of stationary solutions: large-scale vortices, hybrid states with embedded shielded vortices (SVs) of either sign, and two states composed of many similar SVs. Of the latter, the first is a dense vortex gas where all SVs have the same sign and diffuse across the domain. The second is a hexagonal vortex crystal forming from this gas when the linear instability is sufficiently weak. These solutions coexist stably over a wide parameter range. The late-time evolution of the system from small-amplitude initial conditions is nearly self-similar, involving three phases: initial inverse cascade, random nucleation of SVs from turbulence and, once a critical number of vortices is reached, a phase of explosive nucleation of SVs, leading to a statistically stationary state. The vortex gas is continued in the forcing parameter, revealing a sharp transition towards the crystal state as the forcing strength decreases. This transition is analysed in terms of the diffusivity of individual vortices using ideas from statistical physics. The crystal can also decay via an inverse cascade resulting from the breakdown of shielding or insufficient nonlinear damping acting on SVs. Our study highlights the importance of the forcing details in two-dimensional turbulence and reveals the presence of non-trivial SV states in this system, specifically the emergence and melting of a vortex crystal.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Adriani, A., et al. 2018 Clusters of cyclones encircling Jupiter's poles. Nature 555 (7695), 216219.CrossRefGoogle ScholarPubMed
Alert, R., Casademunt, J. & Joanny, J.-F. 2022 Active turbulence. Annu. Rev. Condens. Matter Phys. 13, 143170.CrossRefGoogle Scholar
Alexakis, A. 2018 Three-dimensional instabilities and negative eddy viscosity in thin-layer flows. Phys. Rev. Fluids 3, 114601.CrossRefGoogle Scholar
Alexakis, A. 2023 Quasi-two-dimensional turbulence. Rev. Mod. Plasma Phys. 7, 31.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Ammelt, E., Astrov, Y.A. & Purwins, H.-G. 1998 Hexagon structures in a two-dimensional dc-driven gas discharge system. Phys. Rev. E 58, 71097117.CrossRefGoogle Scholar
Arnol'd, V.I. & Meshalkin, L.D. 1960 Kolmogorov's seminar on selected problems of analysis (1958/59). Usp. Mat. Nauk 15, 247250.Google Scholar
Baconnier, P., Shohat, D., López, C.H., Coulais, C., Démery, V., Düring, G. & Dauchot, O. 2022 Selective and collective actuation in active solids. Nat. Phys. 18, 12341239.CrossRefGoogle Scholar
Bayly, B.J. & Yakhot, V. 1986 Positive-and negative-effective-viscosity phenomena in isotropic and anisotropic Beltrami flows. Phys. Rev. A 34, 381391.CrossRefGoogle ScholarPubMed
Bedanov, V.M., Gadiyak, G.V. & Lozovik, Y.E. 1985 On a modified Lindemann-like criterion for 2D melting. Phys. Lett. A 109, 289291.CrossRefGoogle Scholar
Blatov, V.A. 2004 Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications. Crystallogr. Rev. 10, 249318.CrossRefGoogle Scholar
Boffetta, G. 2007 Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech. 589, 253260.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Bortolozzo, U., Clerc, M.G. & Residori, S. 2009 Solitary localized structures in a liquid crystal light-valve experiment. New J. Phys. 11, 093037.CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1996 Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers. J. Fluid Mech. 306, 293323.CrossRefGoogle Scholar
Bos, W.J.T., Laadhari, F. & Agoua, W. 2020 Linearly forced isotropic turbulence at low Reynolds numbers. Phys. Rev. E 102, 033105.CrossRefGoogle ScholarPubMed
Boubnov, B.M. & Golitsyn, G.S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.CrossRefGoogle Scholar
Boubnov, B.M. & Golitsyn, G.S. 1990 Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215239.CrossRefGoogle Scholar
Boubnov, B.M. & Golitsyn, G.S. 2012 Convection in Rotating Fluids. Springer Science & Business Media.Google Scholar
Carton, X.J., Flierl, G.R. & Polvani, L.M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104, 184506.CrossRefGoogle ScholarPubMed
Chan, C.-K., Mitra, D. & Brandenburg, A. 2012 Dynamics of saturated energy condensation in two-dimensional turbulence. Phys. Rev. E 85, 036315.CrossRefGoogle ScholarPubMed
Chandler, D. 1987 Introduction to Modern Statistical Physics. Oxford University Press.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Couto, N., Alford, M.H., MacKinnon, J. & Mickett, J.B. 2020 Mixing rates and bottom drag in Bering strait. J. Phys. Oceanogr. 50, 809825.CrossRefGoogle Scholar
Cushman-Roisin, B. & Beckers, J.-M. 2011 Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic.Google Scholar
Dallas, V. & Alexakis, A. 2015 Self-organisation and non-linear dynamics in driven magnetohydrodynamic turbulent flows. Phys. Fluids 27, 045105.CrossRefGoogle Scholar
Dash, J.G. 1999 History of the search for continuous melting. Rev. Mod. Phys. 71, 17371743.CrossRefGoogle Scholar
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90, 023005.CrossRefGoogle ScholarPubMed
Di Leoni, P.C., Alexakis, A., Biferale, L. & Buzzicotti, M. 2020 Phase transitions and flux-loop metastable states in rotating turbulence. Phys. Rev. Fluids 5, 104603.CrossRefGoogle Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E. & Kessler, J.O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103.CrossRefGoogle ScholarPubMed
Driscoll, C.F., Schecter, D.A., Jin, D.Z., Dubin, D.H.E., Fine, K.S. & Cass, A.C. 1999 Relaxation of 2D turbulence of vortex crystals. Physica A 263, 284292.CrossRefGoogle Scholar
Dubrulle, B. & Frisch, U. 1991 Eddy viscosity of parity-invariant flow. Phys. Rev. A 43, 53555364.CrossRefGoogle ScholarPubMed
Dunkel, J., Heidenreich, S., Bär, M. & Goldstein, R.E. 2013 a Minimal continuum theories of structure formation in dense active fluids. New J. Phys. 15, 045016.CrossRefGoogle Scholar
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H.H., Bär, M. & Goldstein, R.E. 2013 b Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110, 228102.CrossRefGoogle ScholarPubMed
Echebarria, B. & Riecke, H. 2000 Instabilities of hexagonal patterns with broken chiral symmetry. Physica D 139, 97108.CrossRefGoogle Scholar
Egbert, G.D., Ray, R.D. & Bills, B.G. 2004 Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res. 109, C03003.Google Scholar
Einstein, A. 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 4, 549560.CrossRefGoogle Scholar
Eyink, G.L. & Sreenivasan, K.R. 2006 Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87135.CrossRefGoogle Scholar
Fang, L. & Ouellette, N.T. 2021 Spectral condensation in laboratory two-dimensional turbulence. Phys. Rev. Fluids 6, 104605.CrossRefGoogle Scholar
Favier, B., Silvers, L.J. & Proctor, M.R.E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26, 096605.CrossRefGoogle Scholar
Fjørtoft, R. 1953 On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus 5, 225230.CrossRefGoogle Scholar
Frishman, A. & Herbert, C. 2018 Turbulence statistics in a two-dimensional vortex condensate. Phys. Rev. Lett. 120, 204505.CrossRefGoogle Scholar
Gallet, B. & Ferrari, R. 2020 The vortex gas scaling regime of baroclinic turbulence. Proc. Natl Acad. Sci. USA 117, 44914497.CrossRefGoogle ScholarPubMed
Gallet, B. & Young, W.R. 2013 A two-dimensional vortex condensate at high Reynolds number. J. Fluid Mech. 715, 359388.CrossRefGoogle Scholar
Gama, S., Frisch, U. & Scholl, H. 1991 The two-dimensional Navier–Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: numerical exploration on the Connection Machine. J. Sci. Comput. 6, 425452.CrossRefGoogle Scholar
Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced two-dimensional flow: linear and nonlinear dynamics. J. Fluid Mech. 260, 95126.CrossRefGoogle Scholar
Gibbon, J.D., Kiran, K.V., Padhan, N.B. & Pandit, R. 2023 An analytical and computational study of the incompressible Toner–Tu equations. Physica D 444, 133594.CrossRefGoogle Scholar
Gill, A.E. 1982 Atmosphere-Ocean Dynamics. Academic.Google Scholar
Goldman, D.I., Shattuck, M.D., Moon, S.J., Swift, J.B. & Swinney, H.L. 2003 Lattice dynamics and melting of a nonequilibrium pattern. Phys. Rev. Lett. 90, 104302.CrossRefGoogle ScholarPubMed
Grooms, I., Julien, K., Weiss, J.B. & Knobloch, E. 2010 Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 224501.CrossRefGoogle ScholarPubMed
Guervilly, C., Hughes, D.W. & Jones, C.A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.CrossRefGoogle Scholar
James, M., Bos, W.J.T. & Wilczek, M. 2018 Turbulence and turbulent pattern formation in a minimal model for active fluids. Phys. Rev. Fluids 3, 061101.CrossRefGoogle Scholar
James, M., Suchla, D.A., Dunkel, J. & Wilczek, M. 2021 Emergence and melting of active vortex crystals. Nat. Commun. 12, 111.CrossRefGoogle ScholarPubMed
Jansen, M.F., Adcroft, A.J., Hallberg, R. & Held, I.M. 2015 Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Model. 92, 2841.CrossRefGoogle Scholar
Jansen, M.F. & Held, I.M. 2014 Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 3648.CrossRefGoogle Scholar
Jiménez, J. 2021 Collective organization and screening in two-dimensional turbulence. Phys. Rev. Fluids 6, 084601.CrossRefGoogle Scholar
Jiménez, J. & Guegan, A. 2007 Spontaneous generation of vortex crystals from forced two-dimensional homogeneous turbulence. Phys. Fluids 19, 085103.CrossRefGoogle Scholar
Julien, K., Rubio, A.M., Grooms, I. & Knobloch, E. 2012 Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106, 392428.CrossRefGoogle Scholar
Juricke, S., Danilov, S., Koldunov, N., Oliver, M. & Sidorenko, D. 2020 Ocean kinetic energy backscatter parametrization on unstructured grids: impact on global eddy-permitting simulations. J. Adv. Model. Earth Syst. 12, e2019MS001855.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2019 Condensates in thin-layer turbulence. J. Fluid Mech. 864, 490518.CrossRefGoogle Scholar
van Kan, A., Favier, B., Julien, K. & Knobloch, E. 2022 Spontaneous suppression of inverse energy cascade in instability-driven 2-D turbulence. J. Fluid Mech. 952, R4.CrossRefGoogle Scholar
Kerswell, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Kiran, K.V., Gupta, A., Verma, A.K. & Pandit, R. 2023 Irreversibility in bacterial turbulence: insights from the mean-bacterial-velocity model. Phys. Rev. Fluids 8, 023102.CrossRefGoogle Scholar
Kraichnan, R. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.CrossRefGoogle Scholar
Kraichnan, R.H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 15211536.2.0.CO;2>CrossRefGoogle Scholar
Laurie, J., Boffetta, G., Falkovich, G., Kolokolov, I. & Lebedev, V. 2014 Universal profile of the vortex condensate in two-dimensional turbulence. Phys. Rev. Lett. 113, 254503.CrossRefGoogle ScholarPubMed
Lilly, D.K. 1969 Numerical simulation of two-dimensional turbulence. Phys. Fluids 12, II–240II–249.CrossRefGoogle Scholar
Linkmann, M., Boffetta, G., Marchetti, M.C. & Eckhardt, B. 2019 Phase transition to large scale coherent structures in two-dimensional active matter turbulence. Phys. Rev. Lett. 122, 214503.CrossRefGoogle ScholarPubMed
Linkmann, M., Hohmann, M. & Eckhardt, B. 2020 Non-universal transitions to two-dimensional turbulence. J. Fluid Mech. 892, A18.CrossRefGoogle Scholar
Linkmann, M., Marchetti, M.C., Boffetta, G. & Eckhardt, B. 2020 Condensate formation and multiscale dynamics in two-dimensional active suspensions. Phys. Rev. E 101, 022609.CrossRefGoogle ScholarPubMed
López, H.M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E. 2015 Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301.CrossRefGoogle ScholarPubMed
Meshalkin, L.D. & Sinai, I.G. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. J. Appl. Math. Mech. 25, 17001705.CrossRefGoogle Scholar
Metzler, R. & Klafter, J. 2000 The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 177.CrossRefGoogle Scholar
Mininni, P.D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI–OpenMp scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37, 316326.CrossRefGoogle Scholar
Mitchell, N.P. 2018 Geometric control of fracture and topological metamaterials. PhD thesis, The University of Chicago.Google Scholar
Mitchell, N.P., Nash, L.M. & Irvine, W.T.M. 2018 Tunable band topology in gyroscopic lattices. Phys. Rev. B 98, 174301.CrossRefGoogle Scholar
Musacchio, S. & Boffetta, G. 2019 Condensate in quasi-two-dimensional turbulence. Phys. Rev. Fluids 4, 022602.CrossRefGoogle Scholar
Nagai, K.H. & Kori, H. 2010 Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Phys. Rev. E 81, 065202(R).CrossRefGoogle ScholarPubMed
Nash, L.M., Kleckner, D., Read, A., Vitelli, V., Turner, A.M. & Irvine, W.T.M. 2015 Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 1449514500.CrossRefGoogle ScholarPubMed
Novikov, E.A. 1965 Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 12901294.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6 (Suppl 2), 279287.CrossRefGoogle Scholar
Ophaus, L., Knobloch, E., Gurevich, S.V. & Thiele, U. 2021 Two-dimensional localized states in an active phase-field-crystal model. Phys. Rev. E 103, 032601.CrossRefGoogle Scholar
Orlandi, P. & van Heijst, G.J.F. 1992 Numerical simulation of tripolar vortices in 2D flow. Fluid Dyn. Res. 9, 179206.CrossRefGoogle Scholar
Paret, J. & Tabeling, P. 1997 Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 41624165.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Pouquet, A., Rosenberg, D., Stawarz, J.E. & Marino, R. 2019 Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci. 6, 351369.CrossRefGoogle Scholar
Prugger, A., Rademacher, J.D.M. & Yang, J. 2022 Geophysical fluid models with simple energy backscatter: explicit flows and unbounded exponential growth. Geophys. Astrophys. Fluid Dyn. 116, 374410.CrossRefGoogle Scholar
Prugger, A., Rademacher, J.D.M. & Yang, J. 2023 Rotating shallow water equations with bottom drag: bifurcations and growth due to kinetic energy backscatter. SIAM J. Appl. Dyn. Syst. 22, 24902526.CrossRefGoogle Scholar
Puggioni, L., Boffetta, G. & Musacchio, S. 2022 Giant vortex dynamics in confined bacterial turbulence. Phys. Rev. E 106, 055103.CrossRefGoogle ScholarPubMed
Qin, Z., Faller, H., Dubrulle, B., Naso, A. & Bos, W.J.T. 2020 Transition from non-swirling to swirling axisymmetric turbulence. Phys. Rev. Fluids 5, 064602.CrossRefGoogle Scholar
Riedel, I.H., Kruse, K. & Howard, J. 2005 A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309 (5732), 300303.CrossRefGoogle ScholarPubMed
Rubio, A.M., Julien, K., Knobloch, E. & Weiss, J.B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.CrossRefGoogle ScholarPubMed
Salmon, R. 1980 Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15, 167211.CrossRefGoogle Scholar
Schecter, D.A., Dubin, D.H.E., Fine, K.S. & Driscoll, C.F. 1999 Vortex crystals from 2D Euler flow: experiment and simulation. Phys. Fluids 11, 905914.CrossRefGoogle Scholar
Seshasayanan, K. & Alexakis, A. 2018 Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434462.CrossRefGoogle Scholar
Seshasayanan, K., Benavides, S.J. & Alexakis, A. 2014 On the edge of an inverse cascade. Phys. Rev. E 90, 051003.CrossRefGoogle ScholarPubMed
Seshasayanan, K. & Gallet, B. 2020 Onset of three-dimensionality in rapidly rotating turbulent flows. J. Fluid Mech. 901, R5.CrossRefGoogle Scholar
Siegelman, L., Young, W.R. & Ingersoll, A.P. 2022 Polar vortex crystals: emergence and structure. Proc. Natl Acad. Sci. USA 119, e2120486119.CrossRefGoogle ScholarPubMed
Sivashinsky, G. & Yakhot, V. 1985 Negative viscosity effect in large-scale flows. Phys. Fluids 28, 10401042.CrossRefGoogle Scholar
Słomka, J. & Dunkel, J. 2017 Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2, 043102.CrossRefGoogle Scholar
Smith, L.M., Chasnov, J.R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77, 24672470.CrossRefGoogle ScholarPubMed
Smith, L.M. & Yakhot, V. 1993 Bose condensation and small-scale structure generation in a random force driven 2D turbulence. Phys. Rev. Lett. 71, 352355.CrossRefGoogle Scholar
Smith, L.M. & Yakhot, V. 1994 Finite-size effects in forced two-dimensional turbulence. J. Fluid Mech. 274, 115138.CrossRefGoogle Scholar
Sokolov, I.M. & Klafter, J. 2005 From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. Chaos 15, 026103.CrossRefGoogle ScholarPubMed
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.CrossRefGoogle Scholar
Sozza, A., Boffetta, G., Muratore-Ginanneschi, P. & Musacchio, S. 2015 Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids 27, 035112.CrossRefGoogle Scholar
Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B. & Ott, E. 2005 Crowd synchrony on the millennium bridge. Nature 438, 4344.CrossRefGoogle ScholarPubMed
Sukoriansky, S., Chekhlov, A., Orszag, S.A., Galperin, B. & Staroselsky, I. 1996 Large eddy simulation of two-dimensional isotropic turbulence. J. Sci. Comput. 11, 1345.CrossRefGoogle Scholar
Sushchik, M.M. & Tsimring, L.S. 1994 The Eckhaus instability in hexagonal patterns. Physica D 74, 90106.CrossRefGoogle Scholar
Tkachenko, V.K. 1966 Stability of vortex lattices. Sov. Phys. JETP 23, 10491056.Google Scholar
Toner, J. & Tu, Y. 1998 Flocks, herds and schools: a quantitative theory of flocking. Phys. Rev. E 58, 48284858.CrossRefGoogle Scholar
Tosi, G., Christmann, G., Berloff, N.G., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P.G. & Baumberg, J.J. 2012 Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243.CrossRefGoogle ScholarPubMed
Vallis, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Van Heijst, G.J.F., Kloosterziel, R.C. & Williams, C.W.M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.CrossRefGoogle Scholar
Vieweg, P.P., Scheel, J.D. & Schumacher, J. 2021 Supergranule aggregation for constant heat flux-driven turbulent convection. Phys. Rev. Res. 3, 013231.CrossRefGoogle Scholar
Virtanen, P., et al. 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261272.CrossRefGoogle ScholarPubMed
Vorobieff, P. & Ecke, R.E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.CrossRefGoogle Scholar
Wensink, H.H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R.E., Löwen, H. & Yeomans, J.M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 1430814313.CrossRefGoogle ScholarPubMed
Wiegmann, P. & Abanov, A.G. 2014 Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501.CrossRefGoogle ScholarPubMed
Willebrand, J., Barnier, B., Böning, C., Dieterich, C., Killworth, P.D., Le Provost, C., Jia, Y., Molines, J.-M. & New, A.L. 2001 Circulation characteristics in three eddy-permitting models of the North Atlantic. Prog. Oceanogr. 48, 123161.CrossRefGoogle Scholar
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321324.CrossRefGoogle Scholar
Xia, H. & Francois, N. 2017 Two-dimensional turbulence in three-dimensional flows. Phys. Fluids 29, 111107.CrossRefGoogle Scholar
Yakhot, V. & Sivashinsky, G. 1987 Negative-viscosity phenomena in three-dimensional flows. Phys. Rev. A 35, 815820.CrossRefGoogle ScholarPubMed
Zamora-Munta, J., Masoller, C., Garcia-Ojalvo, J. & Roy, R. 2010 Crowd synchrony and quorum sensing in delay-coupled lasers. Phys. Rev. Lett. 105, 264101.CrossRefGoogle Scholar
Zheng, X.H. & Earnshaw, J.C. 1998 On the Lindemann criterion in 2D. Europhys. Lett. 41, 635640.CrossRefGoogle Scholar
Zhong, F., Ecke, R. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 67, 24732476.CrossRefGoogle ScholarPubMed
Zhou, C. & Kurths, J. 2002 Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys. Rev. Lett. 88, 230602.CrossRefGoogle ScholarPubMed
Supplementary material: File

van Kan et al. supplementary movie 1

Evolution of vorticity field in dense vortex gas at β = 0.5.
Download van Kan et al. supplementary movie 1(File)
File 18.5 MB
Supplementary material: File

van Kan et al. supplementary movie 2

Evolution of vorticity field in dense vortex gas at β = 0.25.
Download van Kan et al. supplementary movie 2(File)
File 13.7 MB
Supplementary material: File

van Kan et al. supplementary movie 3

Evolution of vorticity field in vortex crystal at β = 0.05.
Download van Kan et al. supplementary movie 3(File)
File 10.9 MB
Supplementary material: File

van Kan et al. supplementary movie 4

Evolution of vorticity field in vortex crystal at β = =0.05 in slow motion. Light red axes are identified base on the positions of the maximum vorticity amplitude in the shield and the central extremum in the vortex core.
Download van Kan et al. supplementary movie 4(File)
File 12.6 MB
Supplementary material: File

van Kan et al. supplementary movie 5

Evolution of vorticity field during gradual decay of vortex lattice at β = 0.03. Vorticity decreases in time due to nonlinear and viscous damping, and individual vortices are deleted at random times following the dissolution of their shield.
Download van Kan et al. supplementary movie 5(File)
File 8.3 MB
Supplementary material: File

van Kan et al. supplementary movie 6

Evolution of vorticity field at β = 0.075 with random forcing turned off. Line defects in the vortex crystal are clearly visible and long-lived.
Download van Kan et al. supplementary movie 6(File)
File 10.4 MB
Supplementary material: File

van Kan et al. supplementary movie 7

Evolution of vorticity field at β = 0.075 with random forcing turned on. No defects are visible in the vortex crystal.
Download van Kan et al. supplementary movie 7(File)
File 15.2 MB