Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T22:44:25.633Z Has data issue: false hasContentIssue false

Mixing and inter-scale energy transfer in Richtmyer–Meshkov turbulence

Published online by Cambridge University Press:  08 April 2024

Zhangbo Zhou
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Juchun Ding*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Wan Cheng
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Email address for correspondence: djc@ustc.edu.cn

Abstract

This work investigates the compressible turbulence induced by Richtmyer–Meshkov (RM) instability using high-resolution Navier–Stokes simulations. Special attention is paid to the characteristics of RM turbulence including the mixing width growth, the turbulent kinetic energy (TKE) decay, the mixing degree, inhomogeneity and anisotropy. Three distinct initial perturbation spectra are designed at the interface to reveal the initial condition imprint on the RM turbulence. Results show that cases with initial large-scale perturbations present a stronger imprint on statistical characteristics and also a quicker growth of mixing width, whereas cases with small-scale perturbations present a faster TKE decay, greater mixing level, higher isotropy and homogeneity. A thorough analysis on the inter-scale energy transfer in RM turbulence is also presented with the coarse-graining approach that exposes the two subfilter-scale (SFS) energy fluxes (i.e. deformation work and baropycnal work). A strong correlation between the nonlinear model of baropycnal work (Fluids, 4(2), 2019) and the simulation results is confirmed for the first time, demonstrating its potential in modelling the RM turbulence. Two primary mechanisms of baropycnal work (the straining and baroclinic generation processes) are explored with this nonlinear model. The evolutions of two SFS energy fluxes exhibit distinct behaviours at various filter scales, in different flow regions and under various flow motions (strain and rotation). It is found that all three cases share the common inter-scale energy transfer dynamics, which is important for modelling the RM turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R. 1996 How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150160.CrossRefGoogle Scholar
Abgrall, R. & Karni, S. 2001 Computations of compressible multifluids. J. Comput. Phys. 169, 594623.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.CrossRefGoogle Scholar
Alon, U., Hecht, J., Mukamel, D. & Shvarts, D. 1994 Scale invariant mixing rates of hydrodynamically unstable interface. Phys. Rev. Lett. 72, 28672870.CrossRefGoogle Scholar
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts. Phys. Rev. Lett. 74, 534537.CrossRefGoogle ScholarPubMed
Alon, U., Shvarts, D. & Mukamel, D. 1993 Scale-invariant regime in Rayleigh–Taylor bubble-front dynamics. Phys. Rev. E 48, 10081014.CrossRefGoogle ScholarPubMed
Aluie, H. 2011 Compressible turbulence: the cascade and its locality. Phys. Rev. Lett. 106, 174502.CrossRefGoogle ScholarPubMed
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 5465.CrossRefGoogle Scholar
Aluie, H., Rai, S., Yin, H., Lees, A., Zhao, D., Griffies, S.M., Adcroft, A. & Shang, J.K. 2022 Effective drift velocity from turbulent transport by vorticity. Phys. Rev. Fluids 7, 104601.CrossRefGoogle Scholar
Aslangil, D., Livescu, D. & Banerjee, A. 2020 Variable-density buoyancy-driven turbulence with asymmetric initial density distribution. Physica D 406, 132444.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Ristorcelli, J.R., Balasubramanian, S., Prestridge, K.P. & Tomkins, C.D. 2012 Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. J. Fluid Mech. 696, 6793.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C. & Prestridge, K.P. 2013 Experimental study of initial condition dependence on turbulent mixing in shock-accelerated Richtmyer–Meshkov fluid layers. J. Turbul. 14 (3), 170196.CrossRefGoogle Scholar
Barnes, C.W., et al. 2002 Observation of mix in a compressible plasma in a convergent cylindrical geometry. Phys. Plasmas 9 (11), 44314434.CrossRefGoogle Scholar
Besnard, D., Harlow, F.H., Rauenzahn, R.M. & Zemach, C. 1992 Turbulence transport equations for variable-density turbulence and their relationship to two-field models. Tech. Rep. LA-12303-MS. Los Alamos National Laboratory, Los Alamos.CrossRefGoogle Scholar
Boratav, O.N., Elghobashi, S.E. & Zhong, R. 1998 On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys. Fluids 10 (9), 22602267.CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1998 Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 131.CrossRefGoogle Scholar
Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H. & Frisch, U. 1983 Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411452.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.CrossRefGoogle Scholar
Carbone, M. & Bragg, A.D. 2020 Is vortex stretching the main cause of the turbulent energy cascade? J. Fluid Mech. 883, R2.CrossRefGoogle Scholar
Casner, A. 2021 Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments. Phil. Trans. R. Soc. A 379 (2189), 20200021.CrossRefGoogle ScholarPubMed
Chasnov, J.R. 1997 On the decay of inhomogeneous turbulence. J. Fluid Mech. 342, 335354.CrossRefGoogle Scholar
Colonius, T., Lele, S.K. & Moin, P. 1993 Boundary conditions for direct computation of aerodynamic sound generation. AIAA J. 31 (9), 15741582.CrossRefGoogle Scholar
Cook, A.W. & Zhou, Y. 2002 Energy transfer in Rayleigh–Taylor instability. Phys. Rev. E 66 (2 Pt 2), 026312.CrossRefGoogle ScholarPubMed
Daly, B.J. 1967 Numerical study of two fluid Rayleigh–Taylor instability. Phys. Fluids 10 (2), 297307.CrossRefGoogle Scholar
Deng, X., Jiang, Y., Mao, M., Liu, H., Li, S. & Tu, G. 2015 A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law. Comput. Fluids 116, 2945.CrossRefGoogle Scholar
Deng, X.G. & Zhang, H.X. 2000 Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165 (1), 2244.CrossRefGoogle Scholar
Dimonte, G., et al. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16 (5), 16681693.CrossRefGoogle Scholar
Ding, J., Liang, Y., Chen, M., Zhai, Z., Si, T. & Luo, X. 2018 Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Phys. Fluids 30 (10), 106109.CrossRefGoogle Scholar
Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X. & Luo, X. 2017 On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289317.CrossRefGoogle Scholar
Ding, S.-S., Ding, G.-Y., Chong, K.L., Wu, W.-T., Xia, K.-Q. & Zhong, J.-Q. 2023 Vortex dynamics in rotating Rayleigh–Bénard convection. J. Fluid Mech. 974, A43.CrossRefGoogle Scholar
Do, A., Angulo, A.M., Nagel, S.R., Hall, G.N., Bradley, D.K., Hsing, W.W., Pickworth, L.A., Izumi, N., Robey, H.F. & Zhou, Y. 2022 High spatial resolution and contrast radiography of hydrodynamic instabilities at the National Ignition Facility. Phys. Plasmas 29 (8), 080703.CrossRefGoogle Scholar
Domaradzki, J.A., Teaca, B. & Carati, D. 2009 Locality properties of the energy flux in turbulence. Phys. Fluids 21 (2), 025106.CrossRefGoogle Scholar
Doss, F.W. 2022 Advection versus diffusion in Richtmyer–Meshkov mixing. Phys. Lett. A 430, 127976.CrossRefGoogle Scholar
Einfeldt, B., Munz, C., Roe, P.L. & Sjögreen, B. 1991 On Godunov-type methods near low densities. J. Comput. Phys. 92 (2), 273295.CrossRefGoogle Scholar
Elbaz, Y. & Shvarts, D. 2018 Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh–Taylor and Richtmyer–Meshkov instabilities and its dependence on the initial conditions. Phys. Plasmas 25 (6), 062126.CrossRefGoogle Scholar
Eyink, G.L. 2005 Locality of turbulent cascades. Physica D 207 (1), 91116.CrossRefGoogle Scholar
Eyink, G.L. 2006 Cascade of circulations in fluid turbulence. Phys. Rev. E 74, 066302.CrossRefGoogle ScholarPubMed
Eyink, G.L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21 (11), 115107.CrossRefGoogle Scholar
Feng, L., Xu, J., Zhai, Z. & Luo, X. 2021 Evolution of shock-accelerated double-layer gas cylinder. Phys. Fluids 33 (8), 086105.CrossRefGoogle Scholar
Ferenc, J.-S. & Néda, Z. 2007 On the size distribution of Poisson Voronoi cells. Physica A 385 (2), 518526.CrossRefGoogle Scholar
Fu, L. 2021 Very-high-order TENO schemes with adaptive accuracy order and adaptive dissipation control. Comput. Meth. Appl. Mech. Engng 387, 114193.CrossRefGoogle Scholar
Garnier, E., Adams, N. & Sagaut, P. 2009 Large Eddy Simulation for Compressible Flows. Springer.CrossRefGoogle Scholar
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.CrossRefGoogle Scholar
Gill, J.R., Fattah, R.J. & Zhang, X. 2015 Evaluation and development of non-reflective boundary conditions for aeroacoustic simulations. In 21st AIAA/CEAS Aeroacoustics Conference, AIAA 2015-2677.Google Scholar
Groom, M. & Thornber, B. 2020 The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability. Physica D 407, 132463.CrossRefGoogle Scholar
Groom, M. & Thornber, B. 2021 Reynolds number dependence of turbulence induced by the Richtmyer–Meshkov instability using direct numerical simulations. J. Fluid Mech. 908, A31.CrossRefGoogle Scholar
Groom, M. & Thornber, B. 2023 Numerical simulation of an idealised Richtmyer–Meshkov instability shock tube experiment. J. Fluid Mech. 964, A21.CrossRefGoogle Scholar
Hill, D.J., Pantano, C. & Pullin, D.I. 2006 Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.CrossRefGoogle Scholar
Hu, Z., Morfey, C. & Sandham, N. 2003 Large eddy simulation of plane jet sound radiation. In Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibition, 2003-3166.Google Scholar
Jayaram, R., Jie, Y., Zhao, L. & Andersson, H.I. 2020 Clustering of inertial spheres in evolving Taylor–Green vortex flow. Phys. Fluids 32 (4), 043306.CrossRefGoogle Scholar
Jiang, G.S. & Shu, C.W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Johnson, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett. 124, 104501.CrossRefGoogle ScholarPubMed
Johnson, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J. Fluid Mech. 922, A3.CrossRefGoogle Scholar
Kartoon, D., Oron, D., Arazi, L. & Shvarts, D. 2003 Three-dimensional multimode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at all density ratios. Laser Part. Beams 21 (3), 327334.CrossRefGoogle Scholar
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-T. & Müller, E. 2006 Non-spherical core collapse supernovae – II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A. Astron. Astrophys. 453 (2), 661678.CrossRefGoogle Scholar
Kokkinakis, I.W., Drikakis, D. & Youngs, D.L. 2020 Vortex morphology in Richtmyer–Meshkov-induced turbulent mixing. Physica D 407, 132459.CrossRefGoogle Scholar
Larrouturou, B. 1991 How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1), 5984.CrossRefGoogle Scholar
Lees, A. & Aluie, H. 2019 Baropycnal work: a mechanism for energy transfer across scales. Fluids 4 (2), 92.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.CrossRefGoogle Scholar
Li, L., Yu, C., Chen, Z. & Li, X. 2016 Resolution-optimised nonlinear scheme for secondary derivatives. Intl J. Comput. Fluid Dyn. 30 (2), 107119.CrossRefGoogle Scholar
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. 2004 The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Liu, H. & Xiao, Z. 2016 Scale-to-scale energy transfer in mixing flow induced by the Richtmyer–Meshkov instability. Phys. Rev. E 93, 053112.CrossRefGoogle ScholarPubMed
Livescu, D. 2020 Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech. 52 (1), 309341.CrossRefGoogle Scholar
Llor, A. 2006 Invariants of free turbulent decay. arXiv:physics/0612220.Google Scholar
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2012 Transition to turbulence in shock-driven mixing: a Mach number study. J. Fluid Mech. 690, 203226.CrossRefGoogle Scholar
Manco, J.A.A. & de Mendonca, M.T. 2019 Comparative study of different non-reflecting boundary conditions for compressible flows. J. Braz. Soc. Mech. Sci. Engng 41, 411.CrossRefGoogle Scholar
Mani, A. 2012 Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment. J. Comput. Phys. 231 (2), 704716.CrossRefGoogle Scholar
Mansoor, M.M., Dalton, S.M., Martinez, A.A., Desjardins, T., Charonko, J.J. & Prestridge, K.P. 2020 The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability. J. Fluid Mech. 904, A3.CrossRefGoogle Scholar
McKeown, R., Ostilla-Mónico, R., Pumir, A., Brenner, M.P. & Rubinstein, S.M. 2020 Turbulence generation through an iterative cascade of the elliptical instability. Sci. Adv. 6 (9), eaaz2717.CrossRefGoogle ScholarPubMed
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 2005 Richtmyer–Meshkov instability of arbitrary shapes. Phys. Fluids 17, 034101.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J. & Ranjan, D. 2017 Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779825.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Motheau, E., Almgren, A. & Bell, J.B. 2017 Navier–Stokes characteristic boundary conditions using ghost cells. AIAA J. 55 (10), 33993408.CrossRefGoogle Scholar
Müller, B. 2020 Hydrodynamics of core-collapse supernovae and their progenitors. Living Rev. Comput. Astrophys. 6 (1), 1104.CrossRefGoogle Scholar
Nagarajan, S., Lele, S.K. & Ferziger, J.H. 2003 A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191 (2), 392419.CrossRefGoogle Scholar
Nonomura, T. & Fujii, K. 2017 Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature. J. Comput. Phys. 340, 358388.CrossRefGoogle Scholar
Olmstead, D., Wayne, P., Simons, D., Trueba Monje, I., Yoo, J.H., Kumar, S., Truman, C.R. & Vorobieff, P. 2017 Shock-driven transition to turbulence: emergence of power-law scaling. Phys. Rev. Fluids 2, 052601.CrossRefGoogle Scholar
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8, 28832889.CrossRefGoogle Scholar
Osawa, K., Minamoto, Y., Shimura, M. & Tanahashi, M. 2021 Voronoi analysis of vortex clustering in homogeneous isotropic turbulence. Phys. Fluids 33 (3), 035138.CrossRefGoogle Scholar
Pirozzoli, S. 2006 On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219 (2), 489497.CrossRefGoogle Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.CrossRefGoogle Scholar
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43 (1), 163194.CrossRefGoogle Scholar
Poling, B.E., Prausnitz, J.M. & O'Connell, J.P. 2001 The Properties of Gases and Liquids. McGraw-Hill.Google Scholar
Pope, S.B. 1994 On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6 (2), 973985.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G. & Andrews, M.J. 2005 A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.CrossRefGoogle Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Ren, Z., Wang, B., Xiang, G., Zhao, D. & Zheng, L. 2019 Supersonic spray combustion subject to scramjets: progress and challenges. Prog. Aerosp. Sci. 105, 4059.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.CrossRefGoogle Scholar
Sewell, E.G., Ferguson, K.J., Krivets, V.V. & Jacobs, J.W. 2021 Time-resolved particle image velocimetry measurements of the turbulent Richtmyer–Meshkov instability. J. Fluid Mech. 917, A41.CrossRefGoogle Scholar
Soulard, O. & Griffond, J. 2022 Permanence of large eddies in Richtmyer–Meshkov turbulence for weak shocks and high Atwood numbers. Phys. Rev. Fluids 7, 014605.CrossRefGoogle Scholar
Soulard, O., Guillois, F., Griffond, J., Sabelnikov, V. & Simoëns, S. 2018 Permanence of large eddies in Richtmyer–Meshkov turbulence with a small Atwood number. Phys. Rev. Fluids 3, 104603.CrossRefGoogle Scholar
Subramaniam, A., Wong, M.L. & Lele, S.K. 2019 A high-order weighted compact high resolution scheme with boundary closures for compressible turbulent flows with shocks. J. Comput. Phys. 397, 108822.CrossRefGoogle Scholar
Tagawa, Y., Mercado, J., Prakash, V.N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.CrossRefGoogle Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Taylor, G.I. & Green, A.E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A 158, 499521.Google Scholar
Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R. 2010 The influence of initial condition on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99139.CrossRefGoogle Scholar
Thornber, B., Griffond, J., Bigdelou, P., Boureima, I., Ramaprabhu, P., Schilling, O. & Williams, R.J.R. 2019 Turbulent transport and mixing in the multimode narrowband Richtmyer–Meshkov instability. Phys. Fluids 31 (9), 096105.CrossRefGoogle Scholar
Thornber, B., et al. 2017 Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the $\theta$-group collaboration. Phys. Fluids 29 (10), 105107.CrossRefGoogle Scholar
Thornber, B., Groom, M. & Youngs, D. 2018 A five-equation model for the simulation of miscible and viscous compressible fluids. J. Comput. Phys. 372, 256280.CrossRefGoogle Scholar
Thornber, B. & Zhou, Y. 2012 Energy transfer in the Richtmyer–Meshkov instability. Phys. Rev. E 86, 056302.CrossRefGoogle ScholarPubMed
Toro, E.F. 2019 The HLLC Riemann solver. Shock Waves 29, 10651082.CrossRefGoogle Scholar
Tritschler, V.K., Olson, B.J., Lele, S.K., Hickel, S., Hu, X.Y. & Adams, N.A. 2014 a On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech. 755, 429462.CrossRefGoogle Scholar
Tritschler, V.K., Zubel, M., Hickel, S. & Adams, N.A. 2014 b Evolution of length scales and statistics of Richtmyer–Meshkov instability from direct numerical simulations. Phys. Rev. E 90, 063001.CrossRefGoogle ScholarPubMed
Walchli, B. & Thornber, B. 2017 Reynolds number effects on the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 95, 013104.CrossRefGoogle ScholarPubMed
Wang, J., Wan, M., Chen, S. & Chen, S. 2018 Kinetic energy transfer in compressible isotropic turbulence. J. Fluid Mech. 841, 581613.CrossRefGoogle Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.CrossRefGoogle ScholarPubMed
Wong, M.L., Baltzer, J.R., Livescu, D. & Lele, S.K. 2022 Analysis of second moments and their budgets for Richtmyer–Meshkov instability and variable-density turbulence induced by reshock. Phys. Rev. Fluids 7, 044602.CrossRefGoogle Scholar
Wong, M.L. & Lele, S.K. 2017 High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows. J. Comput. Phys. 339, 179209.CrossRefGoogle Scholar
Wong, M.L., Livescu, D. & Lele, S.K. 2019 High-resolution Navier–Stokes simulations of Richtmyer–Meshkov instability with reshock. Phys. Rev. Fluids 4, 104609.CrossRefGoogle Scholar
Wu, C., Wu, L., Li, H. & Zhang, S. 2021 Very high order WENO schemes using efficient smoothness indicators. J. Comput. Phys. 432, 110158.CrossRefGoogle Scholar
Xie, W., Zhang, R., Lai, J. & Li, H. 2019 An accurate and robust HLLC-type Riemann solver for the compressible Euler system at various Mach numbers. Intl J. Numer. Meth. Fluids 89 (10), 430463.CrossRefGoogle Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C. & Li, X. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.CrossRefGoogle Scholar
Yang, J., Kubota, T. & Zukoski, E.E. 1993 Application of shock-induced mixing to supersonic combustion. AIAA J. 31, 854862.CrossRefGoogle Scholar
Yang, Q., Chang, J. & Bao, W. 2014 Richtmyer–Meshkov instability induced mixing enhancement in the scramjet combustor with a central strut. Adv. Mech. Engng 6, 614189.CrossRefGoogle Scholar
Youngs, D.L. 1991 3-dimensional numerical-simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. Fluids 3 (5), 13121320.CrossRefGoogle Scholar
Youngs, D.L. 2004 Effect of initial conditions on self-similar turbulent mixing. In Proceedings of the International Workshop on the Physics of Compressible Turbulent Mixing, vol. 9. Cambridge.Google Scholar
Zeng, W., Pan, J., Sun, Y. & Ren, Y. 2018 Turbulent mixing and energy transfer of reshocked heavy gas curtain. Phys. Fluids 30 (6), 064106.CrossRefGoogle Scholar
Zhao, D. & Aluie, H. 2018 Inviscid criterion for decomposing scales. Phys. Rev. Fluids 3, 054603.CrossRefGoogle Scholar
Zhao, D., Betti, R. & Aluie, H. 2022 Scale interactions and anisotropy in Rayleigh–Taylor turbulence. J. Fluid Mech. 930, A29.CrossRefGoogle Scholar
Zhao, Z., Liu, N.-S. & Lu, X.-Y. 2020 Kinetic energy and enstrophy transfer in compressible Rayleigh–Taylor turbulence. J. Fluid Mech. 904, A37.CrossRefGoogle Scholar
Zhou, Q., Huang, Y.-X., Lu, Z.-M., Liu, Y.-L. & Ni, R. 2016 Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh–Taylor turbulence. J. Fluid Mech. 786, 294308.CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Gail Glendinning, S., Aaron Skinner, M., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (8), 080901.CrossRefGoogle Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.CrossRefGoogle Scholar
Zhou, Z., Ding, J., Cheng, W. & Luo, X. 2023 a Scaling law of structure function of Richtmyer–Meshkov turbulence. J. Fluid Mech. 972, A18.CrossRefGoogle Scholar
Zhou, Z., Ding, J., Huang, S. & Luo, X. 2023 b A new type of weighted compact nonlinear scheme with minimum dispersion and adaptive dissipation for compressible flows. Comput. Fluids 262, 105934.CrossRefGoogle Scholar