Skip to main content
Log in

Investigations into the anatomical location, physiological function, clinical implications, and significance of the nucleus of Perlia

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Background

The article discusses the investigations into the nucleus of Perlia (NP), a spindle-shaped nucleus located in the dorsal aspect of the oculomotor complex. However, there is still debate over its exact location and function, with conflicting findings in nonhuman primates. Therefore, the current study aimed the describe the location, function, clinical and surgical implications of NP.

Methods

A systematic review was conducted to identify studies related to the following MeSH terms: “perlia nucleus” OR “nucleus of “perlia” OR “convergence nucleus” OR “nucleus of convergence” OR “Perlia’s nucleus”. The search was conducted until September 2022.

Results

The location of the NP has been consistently reported in various studies, with most describing it as situated ventral to the Edinger–Westphal nucleus (EW) and dorsomedial to the oculomotor complex. The incidence of the NP in humans has been reported to range from 9 to 40%. In primates, it was observed to be absent in 77% of midbrains, while well developed in 9%. It is also noted that the NP is not a single nucleus, but rather a group of nuclei that are interconnected and involved in the coordination of eye movements that contain parasympathetic neurons.

Conclusions

The study of the NP holds clinical implications for understanding the neural mechanisms underlying the irregularities in the pupillary light reflex, such as anisocoria or abnormal responses to light, diagnosis, and treatment of neurological disorders like Horner’s syndrome, and management of eye movement disorders including one-and-a-half syndrome, vertical gaze palsy, skew deviation and ptosis. The current study also highlighted the limitations of previous studies, including variations in the reported prevalence of the NP, limitations of the histological techniques, and inconsistent findings across human and animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and materials are available for review upon request.

References

  1. Perlia R (1889) Die anatomie des oculomotoriuscentrums beim menschen. Albrecht von Græfe’s Archiv für Ophthalmol 35(4):287–304. https://doi.org/10.1007/bf01695201

    Article  Google Scholar 

  2. Bernheimer S (1897) Experimentelle studien zur kenntniss der innervation der inneren und äusseren vom oculomotorius versorgten muskeln des auges. Albrecht von Graefes Archiv für Ophthalmol 44:481–525

    Article  Google Scholar 

  3. Warwick R (1955) The so-called nucleus of convergence. Brain: J Neurol 78(1):92–114. https://doi.org/10.1093/brain/78.1.92

    Article  CAS  Google Scholar 

  4. Warwick R (1956) Oculomotor organisation. Ann R Coll Surg Engl 19(1):36–52

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozicz T, Bittencourt JC, May PJ, Reiner A, Gamlin PD, Palkovits M, Horn AK, Toledo CA, Ryabinin AE (2011) The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519(8):1413–1434. https://doi.org/10.1002/cne.22580

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kheradmand A, Zee DS (2011) Cerebellum and ocular motor control. Front Neurol 2:53. https://doi.org/10.3389/fneur.2011.00053

    Article  PubMed  PubMed Central  Google Scholar 

  7. Erichsen JT, May PJ (2002) The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation. Vis Neurosci 19(1):15–29. https://doi.org/10.1017/s0952523801191029

    Article  PubMed  Google Scholar 

  8. Edinger L (1885) Über den verlauf der centralen hirnnervenbahnen mit demonstrationen von präparaten. Arch Psychiat Nervenkr 16:858–859

    Google Scholar 

  9. Westphal C (1887) Ueber einen fall von chronischer progressiver lähmung der augenmuskeln (ophthalmoplegia externa) nebst beschreibung von ganglienzellengruppen im bereiche des oculomotoriuskerns. Arch Psychiatr Nervenkr 18(3):846–871

    Article  Google Scholar 

  10. Spitzka E (1888) The oculo-motor centres and their co-ordinators. J Nerv Ment Dis 13(7):413–432

    Article  Google Scholar 

  11. Panegrossi G (1898) Contributo allo studio anatomo-fisiologico dei centri dei nerve oculomotorii dell’ uomo. Ric morf 6:103–155

    Google Scholar 

  12. Siemerling E (1891) Ueber die chronische progressive lahmung der augenmuskeln. Arch Psychiat Nervenheilk 22:1–206

    Article  Google Scholar 

  13. Cassirer R, Schieff A (1894) Beitriage zur pathologie der chronischen bulbarerkrankungen. Arb neurol Inst (Inst Anat Physiol ZentNerv) Univ 2:110–252

    Google Scholar 

  14. Tsuchida U (1906) Über die ursprungskerne der augenbewegungsnerven, vol 2. Arb. aus dem hirnanat. Institut der Univ, Zürich

    Google Scholar 

  15. Zweig H (1921) Studien zur vergleichenden Anatomie des zentralen hohlengraus bei den. Jb Psychiat Neurol 41:18–38

    Google Scholar 

  16. Benjamin J (1939) The nucleus of the oculomotor nerve with special reference to innervation of the pupil and fibers from the pretectal region. J Nerv Ment Dis 89(3):294–310

    Article  Google Scholar 

  17. Crosby EC, Woodburne RT (1943) The nuclear pattern of the non-tectal portions of the midbrain and isthmus in primates. J Com Neurol 78(3):441–482. https://doi.org/10.1002/cne.900780311

    Article  Google Scholar 

  18. Mills C (1898) The nervous system and its diseases: a practical treatise on neurology for the use of physicians and students. vol 13. Lipp Co Phila JB. https://doi.org/10.1001/jama.1898.02440650054018

    Article  Google Scholar 

  19. Brouwer B (1918) Klinisch-anatomische untersuchung über den. Z für die gesamte Neurol und Psychiatr 40:152

    Article  Google Scholar 

  20. Knies M (1890) Ueber die centralen Störungen der willkürlichen Augenmuskeln. Arch. für Augenheilk. XXII,(3):19–51

  21. Adler A (1933) Zur lokalisation des konvergenzzentrums und der kerne der glatten augenmuskeln. Z für die gesamte Neurol und Psychiatr 145(1):185–207

    Article  Google Scholar 

  22. Leathart PW (1941) The tabetic pupil. Br J Ophthalmol 25(3):111–116. https://doi.org/10.1136/bjo.25.3.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burde RM (1988) Disparate visceral neuronal pools subserve spinal cord and ciliary ganglion in the monkey: a double labeling approach. Brain Res 440(1):177–180. https://doi.org/10.1016/0006-8993(88)91173-0

    Article  CAS  PubMed  Google Scholar 

  24. Burde RM, Loewy AD (1980) Central origin of oculomotor parasympathetic neurons in the monkey. Brain Res 198(2):434–439. https://doi.org/10.1016/0006-8993(80)90757-x

    Article  CAS  PubMed  Google Scholar 

  25. Burde RM (1983) The visceral nuclei of the oculomotor complex. Trans Am Ophthalmol Soc 81:532–548

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishikawa S, Sekiya H, Kondo Y (1990) The center for controlling the near reflex in the midbrain of the monkey: a double labelling study. Brain Res 519(1–2):217–222. https://doi.org/10.1016/0006-8993(90)90080-u

    Article  CAS  PubMed  Google Scholar 

  27. Burde RM, Williams F (1989) Parasympathetic nuclei. Brain Res 498(2):371–375. https://doi.org/10.1016/0006-8993(89)91119-0

    Article  CAS  PubMed  Google Scholar 

  28. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Cytoarchitecture of the human brain stem.Basel: Karger.199

  29. Horn AK, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol 507(3):1317–1335. https://doi.org/10.1002/cne.21598

    Article  PubMed  Google Scholar 

  30. Büttner-Ennever JA, Horn AK (2014) Olszewski and Baxter's cytoarchitecture of the human brainstem. S. Karger AG, Basel.

  31. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA (2022) PRISMA2020: an r package and shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst Rev. https://doi.org/10.1002/cl2.1230

    Article  PubMed  PubMed Central  Google Scholar 

  32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ogut E, Armagan K, Gül Z (2022) The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 37(4):859–880. https://doi.org/10.1007/s11011-022-00960-3

    Article  CAS  PubMed  Google Scholar 

  34. Ogut E, Armagan K (2022) Evaluation of the potential impact of medical ozone therapy on COVID-19 a review study. Ozone Sci Eng. https://doi.org/10.1080/01919512.2022.2065242

    Article  Google Scholar 

  35. Ogut E, Karakas O, Aydin DD (2022) Oppenheimer’s accessory ossicle and clinical significance: a narrative review. J Orthop Rep. https://doi.org/10.1016/j.jorep.2022.100069

    Article  Google Scholar 

  36. Ogut E (2022) The stieda process of the talus: the anatomical knowledge and clinical significance of an overlooked protrusion. Bull Natl Res Cent. https://doi.org/10.1186/s42269-022-00968-w

    Article  Google Scholar 

  37. Ogut E, Armagan K, Tufekci D (2023) The Guillain-Mollaret triangle: a key player in motor coordination and control with implications for neurological disorders. Neurosurg Rev 46(1):181. https://doi.org/10.1007/s10143-023-02086-1

    Article  PubMed  Google Scholar 

  38. Che Ngwa E, Zeeh C, Messoudi A, Büttner-Ennever JA, Horn AK (2014) Delineation of motoneuron subgroups supplying individual eye muscles in the human oculomotor nucleus. Front Neuroanat 8:2. https://doi.org/10.3389/fnana.2014.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimura S, Niida T, Mukuno K, Ishikawa S (1997) Direct parasympathetic pathway from midbrain to ciliary muscles in cats and monkeys. Jpn J Ophthalmol 41(4):203–208. https://doi.org/10.1016/s0021-5155(97)00051-8

    Article  CAS  PubMed  Google Scholar 

  40. Atsuki S (1953) Microscopical study of oculomotor nucleus in human adult. I Tohoku J Exp Med. https://doi.org/10.1620/tjem.58.283

    Article  PubMed  Google Scholar 

  41. Lienbacher K, Sänger K, Strassburger S, Ehrt O, Rudolph G, Barnerssoi M, Horn AKE (2019) Extraocular muscles involved in convergence are innervated by an additional set of palisade endings that may differ in their excitability: a human study. Prog Brain Res 248:127–137. https://doi.org/10.1016/bs.pbr.2019.04.005

    Article  PubMed  Google Scholar 

  42. Rushmore RJ, Wilson-Braun P, Papadimitriou G, Ng I, Rathi Y, Zhang F, O’Donnell LJ, Kubicki M, Bouix S, Yeterian E, Lemaire J-J, Calabrese E, Johnson GA, Kikinis R, Makris N (2020) 3D exploration of the brainstem in 50-micron resolution mri. Front neuroanat. https://doi.org/10.3389/fnana.2020.00040

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chaddad-Neto F, Silva da Costa MD (2022) Surgical Anatomy of the Midbrain. In: Chaddad-Neto F, Silva da Costa MD (eds) Microneuroanatomy and Surgery: A Practical Anatomical Guide. Springer International Publishing, Cham, pp 163–176. doi:https://doi.org/10.1007/978-3-030-82747-2_9

  44. Aladdin Y, Shirah B, Khan K (2022) Vertical one-and-a-half syndrome with pseudoabducens palsy and midbrain horizontal gaze paresis. J Binocul Vis Ocul Motil 72(3):156–160. https://doi.org/10.1080/2576117X.2022.2074239

    Article  PubMed  Google Scholar 

  45. Fröschl AM (2018) Post mortem Untersuchungen funktioneller Neurone des Augenbewegungssystems auf perineuronale Netze bei Fällen mit progressiver supranukleärer Parese (PSP). Theses (Dissertation, LMU Munich) https://doi.org/10.5282/edoc.22200

  46. Gulyás, S. (2016). Supranuclear Regulation of the Eye Movements and the Significance of Their Disturbances. In: Somlai, J., Kovács, T. (eds) Neuro-Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-28956-4_58

  47. Jampel RS (1960) Convergence, divergence, pupillary reactions and accommodation of the eyes from faradic stimulation of the macaque brain. J Comp Neurol 115:371–399. https://doi.org/10.1002/cne.901150306

    Article  CAS  PubMed  Google Scholar 

  48. Parelman JJ, Fay MT, Burde RM (1984) Confirmatory evidence for a direct parasympathetic pathway to internal eye structures. Trans Am Ophthalmol Soc 82:371–380

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark WE (1926) The mammalian oculomotor nucleus. J Anat 60(426–448):421

    Google Scholar 

  50. Warwick R (1954) The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat 88(1):71–93

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun W, May PJ (1993) Organization of the extraocular and preganglionic motoneurons supplying the orbit in the lesser galago. Anat Rec 237(1):89–103. https://doi.org/10.1002/ar.1092370109

    Article  CAS  PubMed  Google Scholar 

  52. May PJ, Warren S, Gamlin PD, Billig I (2018) An anatomic characterization of the midbrain near response neurons in the macaque monkey. Invest Ophthalmol Vis Sci 59(3):1486–1502. https://doi.org/10.1167/iovs.17-23737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anosov I, Bulatova TI (1980) Morphologic and histochemical reactions of the body to administration of Cl. botulinum toxin. VII. Reactions of neurons of the Iakubovich (Edinger-Westphal) nucleus and unpaired midline nucleus (Perlia’s) to administration of Cl. botulinum type B toxin. Zh Mikrobiol Epidemiol Immunobiol 10:96–100

    Google Scholar 

  54. Zeeh C, Horn AK (2012) The subnuclei of the oculomotor nucleus in humans. Klin Monatsbl Augenheilkd 229(11):1083–1089. https://doi.org/10.1055/s-0032-1315252

    Article  CAS  PubMed  Google Scholar 

  55. Heiland Hogan MB, Subramanian S, M Das J (2023) Neuroanatomy, Edinger-Westphal Nucleus (Accessory Oculomotor Nucleus). In: StatPearls. Treasure Island (FL) StatPearls Publishing; PMID: 32119442.

  56. Dos Santos Júnior ED, Da Silva AV, Da Silva KRT, Haemmerle CAS, Batagello DS, Da Silva JM, Lima LB, Da Silva RJ, Diniz GB, Sita LV, Elias CF, Bittencourt JC (2015) The centrally projecting edinger-westphal nucleus—I: efferents in the rat brain. J Chem Neuroanat 68:22–38. https://doi.org/10.1016/j.jchemneu.2015.07.002

    Article  PubMed  Google Scholar 

  57. Ishikawa S, Sekiya H, Kondo Y (1990) The center for controlling the near reflex in the midbrain of the monkey: a double labelling study. Brain Res 519(1):217–222. https://doi.org/10.1016/0006-8993(90)90080-U

    Article  CAS  PubMed  Google Scholar 

  58. Ryabinin AE, Tsivkovskaia NO, Ryabinin SA (2005) Urocortin 1-containing neurons in the human Edinger-Westphal nucleus. Neurosci 134(4):1317–1323. https://doi.org/10.1016/j.neuroscience.2005.05.042

    Article  CAS  Google Scholar 

  59. Nema H, Nema N (2008) Textbook of Ophthalmology. Jaypee brothers medical publishers, 5th Edition, India

    Book  Google Scholar 

  60. Párraga RG, Possatti LL, Alves RV, Ribas GC, Türe U, de Oliveira E (2016) Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations. J Neurosurg JNS 124(5):1377–1395. https://doi.org/10.3171/2015.4.JNS132778

    Article  Google Scholar 

  61. Valeanu LI (2020) The localization and complete extent of the newly defined preganglionic Edinger-Westphal nucleus (EWpg) in human. Dissertation 16-40

  62. Nuñez MA, Miranda JCF, de Oliveira E, Rubino PA, Voscoboinik S, Recalde R, Akiyama O, Jawar SS, Neto MR, Fernandes D (2019) Chapter 4 - Brain stem anatomy and surgical approaches. In: Comprehensive overview of modern surgical approaches to intrinsic brain tumors. Elsevier, pp 53–105. https://doi.org/10.1016/B978-0-12-811783-5.00004-5

  63. Klink S (2008) Neues System zur Erfassung des Akkommodationsbedarfs im menschlichen Auge. Zugl: Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss, 2008

  64. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (2009) Internal Architecture of the Brain Stem with Key Axial Section. In: Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (eds) Duvernoy’s Atlas of the Human Brain Stem and Cerebellum: High-Field MRI: Surface Anatomy, Internal Structure, Vascularization and 3D Sectional Anatomy. Springer, Vienna, pp 53–93

    Google Scholar 

  65. Paxinos G, Huang X-F (1995) Atlas of the human brainstem.San Diego, CA: Academic Press;28.

    Google Scholar 

  66. Sanders EACM (1987) Syndromes of the medial longitudinal fasciculus. In: Sanders EACM, de Keizer RJW, Zee DS (eds) Eye Movement Disorders. Springer, Netherlands, Dordrecht, pp 183–190

    Chapter  Google Scholar 

  67. Jiang Z, Wang W (2018) Isolated bilateral internuclear ophthalmoplegia due to lacunar infarction. Neurol Sci 39(4):795–796. https://doi.org/10.1007/s10072-017-3199-8

    Article  PubMed  Google Scholar 

  68. Takeshige H, Ueno Y, Kamagata K, Sasaki F, Yamashiro K, Tanaka R, Aoki S, Hattori N (2016) Pathways linked to internuclear ophthalmoplegia on diffusion-tensor imaging in a case with midbrain infarction. J Stroke Cerebrovasc Dis : Off J Natl Stroke Assoc 25(11):2575–2579. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.06.040

    Article  Google Scholar 

Download references

Acknowledgements

The present study was presented at the 2nd International Hippocrates Congress on Medical and Health Sciences, which took place from the 28th to the 30th of June in 2019.

Funding

The study has no financial or personal relationship with any third party whose interests could be influenced positively or negatively by the article’s content. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

EO: supervision, project development, data collection, illustration of figures, and manuscript writing. PK: data collection and manuscript writing. OK: data collection and manuscript writing. EY: data collection and manuscript writing. IS: data collection and manuscript writing. The authors described their own experience and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Eren Ogut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics approval is not required for this review.

Consent to participate

Not applicable.

Informed consent

Not applicable.

Consent to publication

All authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogut, E., Kaya, P., Karakas, O. et al. Investigations into the anatomical location, physiological function, clinical implications, and significance of the nucleus of Perlia. Acta Neurol Belg (2024). https://doi.org/10.1007/s13760-024-02533-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13760-024-02533-w

Keywords

Navigation