Skip to main content
Log in

Alumina inorganic molecularly imprinted polymer modified multi-walled carbon nanotubes for uric acid detection in sweat

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 μM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  1. Shumei Q, Zheng L, Qiong J (2019) Detection of purine metabolite uric acid with picolinic-acid-functionalized metal-organic frameworks. ACS Appl Mater Interfaces 11(37):34196–34202

    Article  Google Scholar 

  2. Xiao J, Luo Y, Su L, Lu J, Han W, Xu T, Zhang X (2022) Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Anal Chim Acta 1208:339843

    Article  CAS  PubMed  Google Scholar 

  3. Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C, Jones P, Bradley A, Caskey CT (1994) Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA 91(2):742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ridi RE, Tallima H (2017) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8(5):487–493

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu ES, Hong K, Chun BC (2020) Incidence and risk factors for progression from prehypertension to hypertension. J Hypertens 38(9):1755–1762

    Article  CAS  PubMed  Google Scholar 

  6. Kawasoe S, Kubozono T, Salim AA, Ojima S, Kawabata T, Ikeda Y,Ohishi M (2023) J-shaped association between serum uric acid levels and chronic kidney disease: a cross-sectional study using large health examination data. Eur Heart J 44(Supplement 2):ehad655.2371. https://doi.org/10.1093/eurheartj/ehad655.2371

  7. Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, Stamp LK (2019) Gout. Nat Rev Dis Prim 69:5

    Google Scholar 

  8. Dalbeth N, Gosling AL, Gaffo A, Abhishek A (2016) Gout. Lancet 388:2039–2052

    Article  CAS  PubMed  Google Scholar 

  9. Sato Y, Feig DI, Stack AG, Kang D-H, Lanaspa MA, Ejaz AA, Sánchez-Lozada LG, Kuwabara M, Borghi C, Johnson RJ (2019) The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat Rev Nephrol 15(12):767–775

    Article  CAS  PubMed  Google Scholar 

  10. Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF (2007) Relationship of uric acid with progression of kidney disease. Am J Kidney Dis 50(2):239–247

    Article  CAS  PubMed  Google Scholar 

  11. Mazidi M, Katsiki N, Mikhailidis DP, Banach M (2019) Association of ideal cardiovascular health metrics with serum uric acid, inflammation and atherogenic index of plasma: a population-based survey. Atherosclerosis 284:44–49

    Article  CAS  PubMed  Google Scholar 

  12. Savale L, Akagi S, Tu L, Cumont A, Thuillet R, Phan C, Vely BL, Berrebeh N, Huertas A, Jaïs X, Cottin V, Chaouat A, Tromeur C, Boucly A, Jutant EM, Mercier O, Fadel E, Montani D, Sitbon O, Humbert M, Tamura Y, Guignabert C (2021) Serum and pulmonary uric acid in pulmonary arterial hypertension. Eur Respir J 58(2):2000332

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Wen X, Kong J (2020) Recent progress on uric acid detection: a review. Crit Rev Anal Chem 50(4):359–375

    Article  CAS  PubMed  Google Scholar 

  14. Kang L, Ma H, Yu Y, Pang H, Song Y, Zhang D (2013) Study on amperometric sensing performance of a crown-shaped phosphotungstate-based multilayer film. Sens Actuators B Chem 177:270–278

    Article  CAS  Google Scholar 

  15. Scheepers LEJM, Boonen A, Dagnelie PC, Schram MT, Kallen CJHVD, Henry RMA, Kroon AA, Stehouwer CDA, Arts ICW (2017) Uric acid and blood pressure. J Hypertens 35:1968–1975

    Article  CAS  PubMed  Google Scholar 

  16. Yang D, Luo M, Di J, Tu Y, Yan J (2018) Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Microchim Acta 185:1–7

    Article  Google Scholar 

  17. Azmi NE, Ramli NI, Abdullah J, Hamid MAA, Sidek H, Rahman SA, Ariffin N, Yusof NA (2015) A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens Bioelectron 67:129–133

    Article  CAS  PubMed  Google Scholar 

  18. Marquardt RR, Ward AT, Campbell LD (1983) A rapid high-performance liquid chromatographic method for the quantitation or uric acid in excreta and tissue samples. Poult Sci 62(10):2099–2105

    Article  CAS  PubMed  Google Scholar 

  19. Bode F, Hübener HJ (1952) Identification of uric acid and ascorbic acid by ahromatography. Nature 170(4325):501–501

    Article  CAS  PubMed  Google Scholar 

  20. Motshakeri M, Phillips ARJ, Kilmartin PA (2019) Application of cyclic voltammetry to analyse uric acid and reducing agents in commercial milks. Food Chem 293:23–31

    Article  CAS  PubMed  Google Scholar 

  21. Qin X, Yuan C, Geng G, Shi R, Cheng S, Wang Y (2021) Enzyme-free colorimetric determination of uric acid based on inhibition of gold nanorods etching. Sens Actuators B Chem 333:129638

    Article  CAS  Google Scholar 

  22. Chen X, Chen J, Wang F, Xiang X, Luo M, Ji X, He Z (2012) Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron 35(1):363–368

    Article  CAS  PubMed  Google Scholar 

  23. Dandu SS, Joshi DJ, Park TJ, Kailasa SK (2023) Functionalization of gold nanostars with melamine for colorimetric detection of uric acid. Appl Spectrosc 77(4):360–370

    Article  CAS  PubMed  Google Scholar 

  24. Kovar KA, Bolkiny MNE, Rink R, Hamid MA (1990) An enzymatic assay for the colorimetric and fluorimetric determination of uric acid in sera. Arch Pharm 323(4):235–237

    Article  CAS  Google Scholar 

  25. Xing X, Yao B, Wu Q, Zhang R, Yao L, Xu J, Gao G, Chen W (2022) Continual and accurate home monitoring of uric acid in urine samples with uricase-packaged nanoflowers assisted portable electrochemical uricometer. Biosens Bioelectron 198:113804

    Article  CAS  PubMed  Google Scholar 

  26. Kim MC, Kwak J, Lee SY (2016) Sensing of uric acid via cascade catalysis of uricase and a biomimetic catalyst. Sens Actuators B Chem 232:744–749

    Article  CAS  Google Scholar 

  27. Galbán J, Andreu Y, Almenara MJ, Marcos SD, Castillo JR (2001) Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta 54.5:847–854

    Article  Google Scholar 

  28. Kulyk B, Pereira SO, Fernandes AJS, Fortunato E, Costa FM, Santos NF (2022) Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon 197:253–263

    Article  CAS  Google Scholar 

  29. Zhang W, Liu L, Li Y, Wang D, Ma H, Ren H, Shi Y, Han Y, Ye B-C (2018) Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid. Biosens Bioelectron 121:96–103

    Article  CAS  PubMed  Google Scholar 

  30. Sun CL, Chang CT, Lee HH, Zhou J, Wang J, Sham T-K, Pong W-F (2011) Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5(10):7788–7795

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, Wang M, Tu J, Kogan A, Zhang H, Hsiai TK, Li Z, Gao W (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38(2):217–224

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Yu H, Chai S, Chai X, Wang L, Geng WC, Li JJ, Yue YX, Guo DS, Wang Y (2022) Noninvasive and individual-centered monitoring of uric acid for precaution of hyperuricemia via optical supramolecular sensing. Advanced Science 9(18):2104463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. HamideEhtesabi SOK (2024) Carbon nanomaterials for sweat-based sensors: a review. Microchim Acta 191.1:77

    Google Scholar 

  34. KrisztinaMajer-Baranyi AS, Adányi N (2023) Application of electrochemical biosensors for determination of food spoilage. Biosensors 13.4:456

    Article  Google Scholar 

  35. Xiaoling Ma YS, Gao G, Zhang H, Zhao Q, Zhi J (2023) Application and progress of electrochemical biosensors for the detection of pathogenic viruses. J Electroanal Chem 950:117867

    Article  Google Scholar 

  36. Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2018) Carbon nanotube chemical sensors. Chem Rev 119(1):599–663

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yue Zhu SS, Yin X, Liu Y, Yang W, Chen Y (2023) Carbon nanotube-gold nanoparticle-based self-powered electrochemical biosensors for highly sensitive and stable detection of myoglobin. ACS Appl Nano Mater 13.6:11085–11094

    Article  Google Scholar 

  38. Lee J (2023) Carbon nanotube-based biosensors using fusion technologies with biologicals & chemicals for food assessment. Biosensors 132:183

    Article  Google Scholar 

  39. Ramanavicius S, Ramanavicius A (2022) Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Coll Interface Sci 305:102693

    Article  CAS  Google Scholar 

  40. Dietl S, Sobek H, Mizaikoff B (2021) Epitope-imprinted polymers for biomacromolecules: recent strategies, future challenges and selected applications. Trends Anal Chem 143:116414

    Article  CAS  Google Scholar 

  41. MerveYence AC, Çorman ME, Uzun L, Caglayan MG, Ozkan SA (2023) Fabrication of molecularly imprinted electrochemical sensors for sensitive codeine detection. Microchem J 193:109060

    Article  Google Scholar 

  42. Bernadette Tse Sum Bui AM, Haupt K (2023) Molecularly imprinted polymers as synthetic antibodies for protein recognition: the next generation. Small 19.13:2206453

    Article  Google Scholar 

  43. Dehua Deng YC, Liu W, Ren M, Xia N, Hao Y (2023) Advancements in biosensors based on the assembles of small organic molecules and peptides. Biosens Bioelectron 13.8:773

    Google Scholar 

  44. Jingwei Tao WS, Lu L (2022) Organic small molecule semiconductor materials for OFET-based biosensors. Biosens Bioelectron 216:114667

    Article  PubMed  Google Scholar 

  45. Theyagarajan Y-JKK (2023) Recent developments in the design and fabrication of electrochemical biosensors using functional materials and molecules. Biosensors 13(4):424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo X, Deng F, Min L, Luo S, Guo B, Zeng G, Au C (2013) Facile one-step synthesis of inorganic-framework molecularly imprinted TiO2/WO3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ Sci Technol 47(13):7404–7412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 52171177, 52272106, 62274057). The Sino-German Mobility Program (Grant No. M-0764), and the Natural Science Foundation of Hubei Province (Grant No. 2022EHB023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanping He, Yunbin He or Gang Chang.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 246 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gao, N., Cai, Z. et al. Alumina inorganic molecularly imprinted polymer modified multi-walled carbon nanotubes for uric acid detection in sweat. Microchim Acta 191, 247 (2024). https://doi.org/10.1007/s00604-024-06316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06316-1

Keywords

Navigation