Skip to main content
Log in

Phase transitions of Yukawa systems under electric field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been employed to investigate the phase transition phenomena in three-dimensional strongly coupled Yukawa systems (SC-YSs) under the influence of an external uniaxial AC electric field (MT). Lattice correlation function (LCF) and radial distribution function (RDF) tests are used to investigate the phase transitions in SC-YSs with and without electric fields. The states of dust grains depend on plasma coupling (Γ), screening length (κ) and MT strength. In the absence of MT, the new calculations of LCF and RDF demonstrate the self-organization of dust grains with increasing Γ and decreasing κ. Furthermore, condensation (gas–liquid) and solidification (liquid–crystal) transitions are observed in SC-YSs with increased MT intensities and Γ values. Moreover, gas-like states of the YS require significantly higher MT intensity, while liquid-like or near solid-like states require intermediate to low MT intensity, respectively, to achieve solidification. It is illustrated that the SC-YSs exhibit electrorheological behavior that is the same as conventional electrorheological fluids. Due to these characteristics, the SC-YSs can be used to investigate the electrorheological properties of condensed and soft matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available upon reasonable request from the corresponding author. The manuscript has associated data in a data repository.

References

  1. G. Kahl, E. Schöll-Paschinger, A. Lang, J. Phys. Condens. Matter 14, 9153 (2002)

    Article  ADS  Google Scholar 

  2. J.J. De Pablo, Q. Yan, F.A. Escobedo, Annu. Rev. Phys. Chem. 50, 377 (1999)

    Article  ADS  Google Scholar 

  3. T.C. Halsey, Phys. Rev. E 5, 756 (1993)

    Google Scholar 

  4. V.E. Fortov, G.E. Morfill, Complex and Dusty Plasmas (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  5. J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)

    Article  ADS  Google Scholar 

  6. R.A. Quinn, C. Cui, J. Goree, J.B. Pieper, H. Thomas, G.E. Morfill, Phys. Rev. E 53, R2049 (1996)

    Article  ADS  Google Scholar 

  7. O. Arp, D. Block, A. Piel, A. Melzer, Phys. Rev. Lett. 93, 165004 (2004)

    Article  ADS  Google Scholar 

  8. A. Ivlev, H. Lowen, G. Morfill, C.P. Royall, Complex Plasmas and Colloidal Dispersions Particle-Resolved Studies of Classical Liquids and Solids (World Scientific, Singapore, 2011)

    Google Scholar 

  9. C.K. Goertz, Rev. of Geophysics 27, 271 (1989)

    Article  ADS  Google Scholar 

  10. M. Chaudhuri, A.V. Ivlev, S.A. Khrapak, H.M. Thomas, G.E. Morfill, Soft Matter 7, 1287 (2011)

    Article  ADS  Google Scholar 

  11. M.S. Murillo, Phys. Plasmas 11, 2964 (2004)

    Article  ADS  Google Scholar 

  12. H. Ohta, S. Hamaguchi, Phys. Plasmas 7, 4506 (2000)

    Article  ADS  Google Scholar 

  13. T. Saigo, S. Hamaguchi, Phys. Plasmas 9, 1210 (2002)

    Article  ADS  Google Scholar 

  14. S.A. Khrapak, Phys. Plasmas 28, 084501 (2021)

    Article  ADS  Google Scholar 

  15. A. Shahzad, M. Kashif, T. Munir, M. He, X. Tu, Phys. Plasmas 27, 103702 (2020)

    Article  ADS  Google Scholar 

  16. M.A. Shakoori, M.G. He, A. Shahzad, M. Khan, J. Mol. Model. 28, 398 (2022)

    Article  Google Scholar 

  17. N.N. Rao, J. Plasma Phys. 59, 561 (1998)

    Article  ADS  Google Scholar 

  18. M. Rosenberg, G.J. Kalman, P. Hartmann, Contrib. to. Plasma Phys. 52, 70 (2012)

    Google Scholar 

  19. S.A. Khrapak, Plasma Phys. Control. Fusion 58, 014022 (2016)

    Article  ADS  Google Scholar 

  20. A. Shahzad, M. A. Shakoori, M. G. He, S. Bashir, Sound Waves in Complex (Dusty) Plasmas. In Computational and Experimental Studies of Acoustic Waves, IntechOpen (2018)

  21. S. Nunomura, S. Zhdanov, D. Samsonov, G. Morfill, Phys. Rev. Lett. 94, 45001 (2005)

    Article  ADS  Google Scholar 

  22. A. Shahzad, M.A. Shakoori, M.G. He, F. Yang, Phys. Plasmas 26, 023704 (2019)

    Article  ADS  Google Scholar 

  23. V. Dharodi, E. Kostadinova, Phys. Rev. E 107, 055208 (2023)

    Article  ADS  Google Scholar 

  24. H. Sarma, R. Sarmah, N. Das, Phys. Rev. E 107, 035206 (2023)

    Article  ADS  Google Scholar 

  25. Y.C. Zhao, H.W. Hu, I. Lin, Phys. Rev. E 107, 044119 (2023)

    Article  ADS  Google Scholar 

  26. B.A. Klumov, Uspekhi Fiz. Nauk 193, 305 (2023)

    Article  Google Scholar 

  27. S. Maity, A. Das, Phys. Plasmas 26, 023703 (2019)

    Article  ADS  Google Scholar 

  28. A. Shahzad, M.G. He, Contrib. to. Plasma Phys. 52, 667 (2012)

    Google Scholar 

  29. A. Shahzad, M.G. He, A.I.P. Conf, Proc. 1547, 173 (2013)

    Google Scholar 

  30. A. Shahzad, M.G. He, Radiat. Eff. Defects Solids 170, 758 (2015)

    Article  ADS  Google Scholar 

  31. A. Shahzad, M.G. He, Phys. Plasmas 23, 093708 (2016)

    Article  ADS  Google Scholar 

  32. A. Shahzad, M.-G. He, M.A. Shakoori, IEEE 14th Int. Bhurban Conf. Appl. Sci. Technol. 2017, 472–474 (2017)

    Google Scholar 

  33. M.A. Shakoori, M.G. He, A. Shahzad, M. Khan, Phys. Scr. 98, 015608 (2023)

    Article  ADS  Google Scholar 

  34. A.V. Ivlev, G.E. Morfill, H.M. Thomas, C. Räth, G. Joyce, P. Huber, R. Kompaneets, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, T. Reiter, M. Turin, P. Vinogradov, Phys. Rev. Lett. 100, 095003 (2008)

    Article  ADS  Google Scholar 

  35. A.V. Ivlev, P.C. Brandt, G.E. Morfill, C. Räth, H.M. Thomas, G. Joyce, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, IEEE Trans. Plasma Sci. 38, 733 (2010)

    Article  ADS  Google Scholar 

  36. A.V. Ivlev, M.H. Thoma, C. Räth, G. Joyce, G.E. Morfill, Phys. Rev. Lett. 106, 155001 (2011)

    Article  ADS  Google Scholar 

  37. M.Y. Pustylnik, B. Klumov, M. Rubin-Zuzic, A.M. Lipaev, V. Nosenko, D. Erdle, A.D. Usachev, A.V. Zobnin, V.I. Molotkov, G. Joyce, H.M. Thomas, M.H. Thoma, O.F. Petrov, V.E. Fortov, O. Kononenko, Phys. Rev. Res. 2, 033314 (2020)

    Article  Google Scholar 

  38. C. Dietz, J. Budak, T. Kamprich, M. Kretschmer, M.H. Thoma, Contrib. Plasma Phys. 61, 1–15 (2021)

    Article  Google Scholar 

  39. S. Mitic, M.Y. Pustylnik, D. Erdle, A.M. Lipaev, A.D. Usachev, A.V. Zobnin, M.H. Thoma, H.M. Thomas, O.F. Petrov, V.E. Fortov, O. Kononenko, Phys. Rev. E 103, 063212 (2021)

    Article  ADS  Google Scholar 

  40. K. Vermillion, D. Sanford, L. Matthews, P. Hartmann, M. Rosenberg, E. Kostadinova, J. Carmona-Reyes, T. Hyde, A.M. Lipaev, A.D. Usachev, A.V. Zobnin, O.F. Petrov, M.H. Thoma, M.Y. Pustylnik, H.M. Thomas, A. Ovchinin, Phys. Plasmas 29, 023701 (2022)

    Article  ADS  Google Scholar 

  41. E. Joshi, M.Y. Pustylnik, M.H. Thoma, H.M. Thomas, M. Schwabe, Phys. Rev. Res. 5, L012030 (2023)

    Article  Google Scholar 

  42. D. Kana, C. Dietz, M.H. Thoma, Phys. Plasmas 27, 103703 (2020)

    Article  ADS  Google Scholar 

  43. M. Schwabe, S.A. Khrapak, S.K. Zhdanov, M.Y. Pustylnik, C. Rath, M. Fink, M. Kretschmer, A.M. Lipaev, V.I. Molotkov, A.S. Schmitz, M.H. Thoma, A.D. Usachev, A.V. Zobnin, G.I. Padalka, V.E. Fortov, O.F. Petrov, H.M. Thomas, New J. Phys. 22, 083079 (2020)

    Article  ADS  Google Scholar 

  44. R. Kompaneets, G.E. Morfill, A.V. Ivlev, Phys. Plasmas 16, 043705 (2009)

    Article  ADS  Google Scholar 

  45. M. Rosenberg, J. Plasma Phys. 81, 905810407 (2015)

    Article  Google Scholar 

  46. P.C. Brandt, A.V. Ivlev, G.E. Morfill, J. Chem. Phys. 132, 234709 (2010)

    Article  ADS  Google Scholar 

  47. P.C. Brandt, A.V. Ivlev, G.E. Morfill, J. Chem. Phys. 130, 204513 (2009)

    Article  ADS  Google Scholar 

  48. K. Vermillion, A. Terrell, E. Gehr, E.G. Kostadinova, P. Hartmann, L.S. Matthews, T.W. Hyde, AIAA SciTech Forum. (2023). https://doi.org/10.2514/6.2023-1587

    Article  Google Scholar 

  49. G.J. Kalman, P. Hartmann, Z. Donko, M. Rosenberg, Phys. Rev. Lett. 92, 065001 (2004)

    Article  ADS  Google Scholar 

  50. O.S. Vaulina, S.V. Vladimirov, O.F. Petrov, V.E. Fortov, Phys. Plasmas 11, 3234 (2004)

    Article  ADS  Google Scholar 

  51. O.S. Vaulina, I.E. Dranzhevski, Phys. Scr. 73, 577 (2006)

    Article  ADS  Google Scholar 

  52. M. Begum, N. Das, Eur. Phys. J. Plus 131, 1–12 (2016)

    Article  Google Scholar 

  53. N. Chaubey, J. Goree, Front. Phys. 10, 879092 (2022)

    Article  Google Scholar 

  54. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  55. M. Mazars, Mol. Phys. 105, 1909 (2007)

    Article  ADS  Google Scholar 

  56. S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Phys. Rev. E 56, 4671 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the National Science Fund for Distinguished Young Scholars of China (No. 51525604) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51721004). Additionally, Haipeng Li acknowledges the support of the Basic Research Project of Xuzhou City (Grant No. KC22043) for the completion of this work. Special thanks are extended to Dr. X. D. Zhang at the Network Information Center of Xi’an Jiaotong University for providing support with the HPC platform. Furthermore, the authors express their appreciation to the National Centre for Physics Islamabad, Pakistan, for the allocation of computational resources for checking and running the MD code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Asif Shakoori or Maogang He.

Ethics declarations

Conflict of interest

The authors have no conflict of interest relevant to financial or non-financial that could influence the manuscript outcomes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakoori, M.A., He, M., Shahzad, A. et al. Phase transitions of Yukawa systems under electric field. Eur. Phys. J. Plus 139, 316 (2024). https://doi.org/10.1140/epjp/s13360-024-05109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05109-y

Navigation