Skip to main content
Log in

Protective effect of resveratrol on nickel-refining fumes-induced inflammatory damage

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Nickel (Ni), a ductile and hard silver-white transition metal, is commonly found in occupational environments and can harm the human body. Since it is a toxic compound, long-term Ni exposure can cause pneumonia, rhinitis, and other types of respiratory inflammatory diseases. Resveratrol (Res) is a plant antitoxin polyphenol, which also has anti-cancer and anti-inflammatory properties. In this report, the toxicity of Ni-refining fumes on the human lung bronchial epithelial (BEAS-2B) cells, as well as the protective effects of Res were investigated in vitro, and the specific mechanism of its anti-inflammatory effect was explained. The experimental observations of this study revealed that Ni-refining fumes induce BEAS-2B cell damage, increase reactive oxygen species (ROS) content, activate NLRP3 (LRR-, NOD-, and pyrin domain-containing 3) inflammasome, and promote the secretion of the cytokine Interleukin (IL)-1β, leading to cellular inflammation and reducing cell activity. Resveratrol (20 μmol/L) activated sirtuin 1 (SIRT1) in BEAS-2B cells to increase protein and mRNA expression. SIRT1 was observed to inhibit the transcriptional activity of nuclear factor-kappaB (NF-κB), reduced the expression of NLRP3 protein and mRNA, and inhibited NLRP3 inflammation. The level of inflammasome activation and IL-1β overexpression could reduce the inflammatory damage caused by the Ni-refining fume particles on the BEAS-2B cells and exert anti-inflammatory protective effects. In vivo experiments further confirmed that resveratrol could effectively alleviate the acute inflammatory injuries caused due to exposure to the Ni-refining fume particles in the lung tissues of the Wistar rats, and verified that resveratrol could exert its anti-inflammatory impact through the SIRT1-NF-κB-NLRP3 pathway. These results provide an important theoretical basis for developing novel protective drugs and investigating the mechanism of action for inflammatory injury in occupational populations caused by exposure to nickel and other heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Di Tola, M., Marino, M., Amodeo, R., Tabacco, F., Casale, R., Portaro, L., Borghini, R., Cristaudo, A., Manna, F., Rossi, A., De Pità, O., Cardelli, P., & Picarelli, A. (2014). Immunological characterization of the allergic contact mucositis related to the ingestion of nickel-rich foods. Immunobiology, 219, 522–530. https://doi.org/10.1016/j.imbio.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  2. Yebra, M. C., Cancela, S., & Cespon, R. M. (2008). Automatic determination of nickel in foods by flame atomic absorption spectrometry. Food Chemistry, 108, 774–778. https://doi.org/10.1016/j.foodchem.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, K. H., Shon, Z. H., Mauulida, P. T., & Song, S. K. (2014). Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment. Chemosphere, 111, 312–319. https://doi.org/10.1016/j.chemosphere.2014.03.138.

    Article  CAS  PubMed  Google Scholar 

  4. Straif, K., Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Freeman, C., Galichet, L., & Cogliano, V., W.H.O.I.A.f.R.o.C.M.W. Group. (2009). A review of human carcinogens-Part C: metals, arsenic, dusts, and fibres. The Lancet Oncology, 10, 453–454. https://doi.org/10.1016/s1470-2045(09)70134-2.

    Article  PubMed  Google Scholar 

  5. Zhao, J., Bowman, L., Zhang, X., Shi, X., Jiang, B., Castranova, V., & Ding, M. (2009). Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. Journal of Nanobiotechnology, 7, 2 https://doi.org/10.1186/1477-3155-7-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sivulka, D. J. (2005). Assessment of respiratory carcinogenicity associated with exposure to metallic nickel: A review. Regulatory Toxicology and Pharmacology, 43, 117–133. https://doi.org/10.1016/j.yrtph.2005.06.014.

    Article  CAS  PubMed  Google Scholar 

  7. Das, K. K., Das, S. N. & Dhundasi, S. A. (2008). Nickel, its adverse health effects & oxidative stress. Indian Journal of Medical Research, 128, 412–425.

    CAS  PubMed  Google Scholar 

  8. Cao, L., Chen, X., Xiao, X., Ma, Q. & Li, W. (2016). Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. International Journal of Oncology, 49, 735–743. https://doi.org/10.3892/ijo.2016.3559.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan, S. X., Wang, D. X., Wu, Q. X., Ren, C. M., Li, Y., Chen, Q. Z., Zeng, Y. H., Shao, Y., Yang, J. Q., Bai, Y., Zhang, P., Yu, Y., Wu, K., Sun, W. J. & He, B. C. (2016). BMP9/p38 MAPK is essential for the antiproliferative effect of resveratrol on human colon cancer. Oncology Reports, 35, 939–947. https://doi.org/10.3892/or.2015.4407.

    Article  CAS  PubMed  Google Scholar 

  10. Schaumloffel, D. (2012). Nickel species: Analysis and toxic effects. Journal of Trace Elements in Medicine and Biology, 26, 1–6. https://doi.org/10.1016/j.jtemb.2012.01.002.

    Article  CAS  PubMed  Google Scholar 

  11. Sinha, D., Sarkar, N., Biswas, J. & Bishayee, A. (2016). Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Seminars in Cancer Biology, 40-41, 209–232. https://doi.org/10.1016/j.semcancer.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  12. Munoz, A. & Costa, M. (2012). Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity. Toxicology and Applied Pharmacology, 260, 1–16. https://doi.org/10.1016/j.taap.2011.12.014.

    Article  CAS  PubMed  Google Scholar 

  13. Qin, R., Wang, Y., Wang, S., Xia, B., Xin, R., Li, C. & Wu, Y. (2019). Nickel-refining dust regulates the expression of inflammatory factors in NIH/3T3 cells. Toxicology and Industrial Health, 35, 239–247. https://doi.org/10.1177/0748233719828589.

    Article  CAS  PubMed  Google Scholar 

  14. Green, S. J., Scheller, L. F., Marletta, M. A., Seguin, M. C., Klotz, F. W., Slayter, M., Nelson, B. J. & Nacy, C. A. (1994). Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunology Letters, 43, 87–94. https://doi.org/10.1016/0165-2478(94)00158-8.

    Article  CAS  PubMed  Google Scholar 

  15. Cao, Z., Fang, Y., Lu, Y., Qian, F., Ma, Q., He, M., Pi, H., Yu, Z. & Zhou, Z. (2016). Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. International Journal of Nanomedicine, 11, 3331–3346. https://doi.org/10.2147/IJN.S106912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrington, A. D., Smirnov, A., Tsirka, S. E. & Schoonen, M. A. (2015). Metal-sulfide mineral ores, Fenton chemistry and disease-particle induced inflammatory stress response in lung cells. International Journal of Hygiene and Environmental Health, 218, 19–27. https://doi.org/10.1016/j.ijheh.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  17. Xin, R., Pan, Y. L., Wang, Y., Wang, S. Y., Wang, R., Xia, B., Qin, R. N., Fu, Y. & Wu, Y. H. (2019). Nickel-refining fumes induce NLRP3 activation dependent on mitochondrial damage and ROS production in Beas-2B cells. Archives of Biochemistry and Biophysics, 676, 108148. https://doi.org/10.1016/j.abb.2019.108148.

    Article  CAS  PubMed  Google Scholar 

  18. Martinon, F., & Tschopp, J. (2005). NLRs join TLRs as innate sensors of pathogens. Trends in Immunology, 26, 447–454. https://doi.org/10.1016/j.it.2005.06.004.

    Article  CAS  PubMed  Google Scholar 

  19. Feghali, C. A. & Wright, T. M. (1997). Cytokines in acute and chronic inflammation. Frontiers in Bioscience, 2, d12–d26. https://doi.org/10.2741/a171.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, X. T., Li, X., Xie, M. L., Huang, Z., Huang, Y. X., Wu, G. X., Peng, Z. R., Sun, Y. N., Ming, Q. L., Liu, Y. X., Chen, J. P. & Xu, S. N. (2019). Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chemico-Biological Interactions, 306, 29–38. https://doi.org/10.1016/j.cbi.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, B., Iqbal, M. A., Singh, R. K., & Bamezai, R. N. (2015). Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy. Biochimie, 118, 26–35. https://doi.org/10.1016/j.biochi.2015.07.016.

    Article  CAS  PubMed  Google Scholar 

  22. Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A. & Mayo, M. W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal, 23, 2369–2380. https://doi.org/10.1038/sj.emboj.7600244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gertz, M., Nguyen, G. T., Fischer, F., Suenkel, B., Schlicker, C., Franzel, B., Tomaschewski, J., Aladini, F., Becker, C., Wolters, D., & Steegborn, C. (2012). A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One, 7, e49761 https://doi.org/10.1371/journal.pone.0049761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duan, W. X., He, M. D., Mao, L., Qian, F. H., Li, Y. M., Pi, H. F., Liu, C., Chen, C. H., Lu, Y. H., Cao, Z. W., Zhang, L., Yu, Z. P. & Zhou, Z. (2015). NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicology and Applied Pharmacology, 286, 80–91. https://doi.org/10.1016/j.taap.2015.03.024.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., Mucke, L. & Gan, L. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. Journal of Biological Chemistry, 280, 40364–40374. https://doi.org/10.1074/jbc.M509329200.

    Article  CAS  PubMed  Google Scholar 

  26. Tveden-Nyborg, P., Bergmann, T. K., Jessen, N., Simonsen, U. & Lykkesfeldt, J. (2023). BCPT 2023 policy for experimental and clinical studies. Basic Clin Pharmacol, 133, 391–396. https://doi.org/10.1111/bcpt.13944.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported partly by grants from the National Natural Science Foundation of China (82273601).

Author information

Authors and Affiliations

Authors

Contributions

YLP, RX, and YHW designed the study; YF conducted the study; RX performed the statistical analyses and interpreted the data; RZW contributed to study materials and consumables; RX, YLP and RZW wrote the manuscript; PYL and RZW contributed equally to this work.

Corresponding authors

Correspondence to Rui Xin or Yong-Hui Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) guidelines at Harbin Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, YL., Wu, RZ., Fu, Y. et al. Protective effect of resveratrol on nickel-refining fumes-induced inflammatory damage. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01263-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01263-3

Keywords

Navigation