Skip to main content
Log in

LncRNA AC005165.1 Alleviates IL-1β-Induced Osteoarthritis via miR-199a-3p/TXNIP Axis

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a chronic musculoskeletal disease and often causes impaired joint mobility and disability. Long noncoding RNAs (lncRNAs) play pivotal roles in OA development. This study was done to explore the role and mechanism of the lncRNA AC005165.1 in the cell model of interleukin-1β (IL)-1β-treated chondrocytes. This study recruited 20 surgically treated OA patients and 12 age- and gender-matched controls. Real-time reverse transcription quantitative polymerase chain reaction was used to examine the expression levels of AC005165.1, miR-199a-3p, and thioredoxin-interacting protein (TXNIP) in articular cartilage of patients and IL-1β-treated human chondrocytes. Cell viability and apoptosis were evaluated by cell counting kit‐8 and flow cytometry assays, respectively. The protein levels of inflammatory cytokines were assessed by western blotting. Enzyme‐linked immunosorbent assay was conducted to detect the concentrations of the inflammatory cytokines in chondrocytes. Luciferase reporter assay and Pearson’s correlation analysis were used for analyzing the interaction and the correlation among AC005165.1, miR-199a-3p, and TXNIP. AC005165.1 expression was downregulated in cartilage of OA patients and chondrocytes treated with IL-1β, compared to that in the control groups. AC005165.1 knockdown increased apoptosis and aggravated inflammatory response in IL-1β-treated chondrocytes. AC005165.1 interacted with miR-199a-3p, and TXNIP was targeted by miR-199a-3p. In rescue assay, miR-199a-3p knockdown and TXNIP overexpression significantly reduced apoptosis and mitigated inflammatory response in IL-1β-treated chondrocytes with AC005165.1 knockdown. AC005165.1 knockdown promoted apoptosis and inflammatory response in IL-1β-treated chondrocytes via the miR-199a-3p/TXNIP axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alvarez-Garcia O et al (2016) Suppression of REDD1 in osteoarthritis cartilage, a novel mechanism for dysregulated mTOR signaling and defective autophagy. Osteoarthr Cartil 24(9):1639–1647

    Article  CAS  Google Scholar 

  • Cai L et al (2022) Long non-coding RNA plasmacytoma variant translocation 1 and growth arrest specific 5 regulate each other in osteoarthritis to regulate the apoptosis of chondrocytes. Bioengineered 13(5):13680–13688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham F et al (2019) Ensembl 2019. Nucleic Acids Res 47(D1):D745-d751

    Article  CAS  PubMed  Google Scholar 

  • De Roover A et al (2023) Fundamentals of osteoarthritis: inflammatory mediators in osteoarthritis. Osteoarthr Cartil 31(10):1303–1311

    Article  Google Scholar 

  • Feng L et al (2022) Malat1 attenuated the rescuing effects of docosahexaenoic acid on osteoarthritis treatment via repressing its chondroprotective and chondrogenesis activities. Biomed Pharmacother 154:113608

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ, Radinsky R (1996) Search for genes that suppress cancer metastasis. J Natl Cancer Inst 88(23):1700–1703

    Article  CAS  PubMed  Google Scholar 

  • Hawker GA, King LK (2022) The burden of osteoarthritis in older adults. Clin Geriatr Med 38(2):181–192

    Article  PubMed  Google Scholar 

  • Huang S et al (2023a) Strategies for cartilage repair in osteoarthritis based on diverse mesenchymal stem cells-derived extracellular vesicles. Orthop Surg 15(11):2749–2765

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang F et al (2023b) Downregulation of lncRNA NEAT1 interacts with miR-374b-5p/PGAP1 axis to aggravate the development of osteoarthritis. J Orthop Surg Res 18(1):670

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren–Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474(8):1886–1893

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong H et al (2021) Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front Cell Dev Biol 9:774370

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2022) LncRNA LEMD1-AS1 relieves chondrocyte inflammation by targeting miR-944/PGAP1 in osteoarthritis. Cell Cycle 21(19):2038–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loganathan T, Doss CG (2023) Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 23(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T et al (2022) Corilagin restrains NLRP3 inflammasome activation and pyroptosis through the ROS/TXNIP/NLRP3 pathway to prevent inflammation. Oxid Med Cell Longev 2022:1652244

    Article  PubMed  PubMed Central  Google Scholar 

  • Motta F et al (2023) Inflammaging and osteoarthritis. Clin Rev Allergy Immunol 64(2):222–238

    Article  CAS  PubMed  Google Scholar 

  • Park HS et al (2021) TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy 17(9):2549–2564

    Article  CAS  PubMed  Google Scholar 

  • Postler AE et al (2023) When are patients with osteoarthritis referred for surgery? Best Pract Res Clin Rheumatol 37(2):101835

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen JV (2014) Outcome and risk of revision following shoulder replacement in patients with glenohumeral osteoarthritis. Acta Orthop Suppl 85(355):1–23

    Article  PubMed  Google Scholar 

  • Salman LA et al (2023) Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Res Ther 25(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheuing WJ et al (2023) The burden of osteoarthritis: is it a rising problem? Best Pract Res Clin Rheumatol 37(2):101836

    Article  PubMed  Google Scholar 

  • Tuerlings M et al (2021) Long non-coding RNA expression profiling of subchondral bone reveals AC005165.1 modifying FRZB expression during osteoarthritis. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keab826

    Article  PubMed Central  Google Scholar 

  • Ukai T et al (2012) MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res 30(12):1915–1922

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2019) LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. Artif Cells Nanomed Biotechnol 47(1):1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2021) LncRNA HOTAIR modulates chondrocyte apoptosis and inflammation in osteoarthritis via regulating miR-1277-5p/SGTB axis. Wound Repair Regen 29(3):495–504

    Article  PubMed  Google Scholar 

  • Werry F et al (2023) Apoptosis regulation in osteoarthritis and the influence of lipid interactions. Int J Mol Sci 24(17):13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y et al (2019) The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis. Curr Gene Ther 19(4):255–263

    Article  CAS  PubMed  Google Scholar 

  • Xiao SQ et al (2023) The role of apoptosis in the pathogenesis of osteoarthritis. Int Orthop 47(8):1895–1919

    Article  PubMed  Google Scholar 

  • Xiong G et al (2022) Long non-coding RNA MEG3 regulates the progress of osteoarthritis by regulating the miR-34a/Klotho axis. Ann Transl Med 10(8):454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2014) A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS ONE 9(1):e87797

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2022) LncRNA SNHG12 promotes osteoarthritis progression through targeted down-regulation of miR-16–5p. Clin Lab. https://doi.org/10.7754/Clin.Lab.2021.210402

    Article  PubMed  Google Scholar 

  • Zhan Y et al (2022) Novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death. JHEP Rep 4(9):100532

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2019) LncRNA MALAT1 promotes osteoarthritis by modulating miR-150–5p/AKT3 axis. Cell Biosci 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2021) Clinical significance and mechanism of LncRNA GAS-5 in osteoarthritis. Am J Transl Res 13(7):8465–8470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Gu W (2020) Effects of miR-146a-5p on chondrocyte interleukin-1β-induced inflammation and apoptosis involving thioredoxin interacting protein regulation. J Int Med Res 48(11):300060520969550

    Article  CAS  PubMed  Google Scholar 

  • Zhao S et al (2023) Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in osteoarthritis. J Nanobiotechnology 21(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng D et al (2023) Inhibition of LncRNA SNHG14 protects chondrocyte from injury in osteoarthritis via sponging miR-137. Autoimmunity 56(1):2270185

    Article  PubMed  Google Scholar 

  • Zhou Y et al (2022) Long noncoding RNA H19 alleviates inflammation in osteoarthritis through interactions between TP53, IL-38, and IL-36 receptor. Bone Joint Res 11(8):594–607

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu R et al (2023) Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol 215:115707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Wuhan Municipal Health Commission (No. WZ15B09).

Author information

Authors and Affiliations

Authors

Contributions

XG were the main designers of this study. XG and TX performed the experiments and analyzed the data. XG and TX drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tian Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

The study was approved by the Medical Ethics Committee of Wuhan Hospital of Traditional Chinese Medicine and informed consent of all patients was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Xie, T. LncRNA AC005165.1 Alleviates IL-1β-Induced Osteoarthritis via miR-199a-3p/TXNIP Axis. Biochem Genet (2024). https://doi.org/10.1007/s10528-024-10720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-024-10720-w

Keywords

Navigation