Skip to main content
Log in

Nanoparticles Based on Polyferulic and Polygentisic Acids as New Carriers of Anticancer Drugs

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Synthesis of nanoparticles based on lignin-like polymers with a specific structure and investigation of their potential as drug carriers for tumor treatment. Methods: Enzyme laccase was used for polymer synthesis. NMR and FTIR were applied for polymer structure analysis. Nanoparticles were formed by dialysis. DLS and TEM were used to investigate their physico-chemical properties and morphology. The MTT assay was applied in the cytotoxicity analysis. Flow cytometry and fluorescent microscopy were used to study the internalization of NPs by human cells. Apoptosis was measured with Annexin V. Results and Discussion:The nanoparticles formed by lignin-like polymers can differ in morphology depending on the monomers used in the enzymatic reaction and the method of their formation. Polyferulic nanoparticles actively penetrate tumor cells growing in monolayer culture and as part of spheroids. The nanoparticle-bound anti-cancer drug doxorubicin has a higher cytotoxic effect on breast cancer cells compared with a free compound. Conclusions: The morphology of nanoparticles can affect their penetration into tumor cells and their cytotoxic effect. Proposed carriers can be used for efficient, passive targeted drug delivery in tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Brigger, I., Dubernet, C., and Couvreur, P., Adv. Drug Deliv. Rev., 2002, vol. 54, pp. 631–651. https://doi.org/10.1016/s0169-409x(02)00044-3

    Article  CAS  PubMed  Google Scholar 

  2. Bozzuto, G. and Molinari, A., Int. J. Nanomed., 2002, vol. 10, pp. 975–999. https://doi.org/10.2147/IJN.S68861

    Article  CAS  Google Scholar 

  3. Sharma, A., Goyal, A.K., and Rath, G., J. Drug Target., 2017, vol. 15, pp. 1–16. https://doi.org/10.1080/1061186X.2017.1400553

    Article  Google Scholar 

  4. Cho, C.F., Shukla, S., Simpson, E.J., Steinmetz, N.F., Luyt, L.G., and Lewis, J.D., Methods Mol. Biol., 2014, vol. 1108, pp. 211–230. https://doi.org/10.1007/978-1-62703-751-8_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lomis, N., Westfall, S., Farahdel, L., Malhotra, M., Shum-Tim, D., and Prakash, S., Nanomaterials (Basel), 2016, vol. 6, p. 116. https://doi.org/10.3390/nano6060116

    Article  CAS  PubMed  Google Scholar 

  6. Jain, A.K., Das, M., Swarnakar, N.K., and Jain, S., Crit. Rev. Drug Carrier Syst., 2011, vol. 28, pp. 1–45. https://doi.org/10.1615/critrevtherdrugcarriersyst.v28.i1.10

    Article  CAS  Google Scholar 

  7. Frangville, C., Rutkevičius, M., Richter, A.P., Velev, O.D., Stoyanov, S.D., and Paunov, V.N., ChemPhysChem, 2012, vol. 13, pp. 4235–4243. https://doi.org/10.1002/cphc.201200537

    Article  CAS  PubMed  Google Scholar 

  8. Figueiredo, P., Ferro, C., Kemell, M., Liu, Z., Kiriazis, A., Lintinen, K., Florindo, H.F., Yli-Kauhaluoma, J., Hirvonen, J., Kostiainen, M.A., and Santos, H.A., Nanomedicine, 2017, vol. 2017, p. 0219. https://doi.org/10.2217/nnm-2017-0219

    Article  CAS  Google Scholar 

  9. Lisova, Z.A., Lisov, A.V., and Leontievsky, A.A., J. Basic Microbiol., 2010, vol. 50, pp. 72–82. https://doi.org/10.1002/jobm.200900382

    Article  CAS  PubMed  Google Scholar 

  10. Fei, Z., Chen, F., Zhong, M., Qiu, J., Li, W., and Sadeghzadeh, S.M., RSC Adv., 2019, vol. 9, pp. 28078–28088. https://doi.org/10.1039/c9ra05079e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kishimoto, T., Uraki, Y., and Ubukata, M., Org. Biomol. Chem., 2006, vol. 4, p. 1343. https://doi.org/10.1039/B518005H

    Article  CAS  PubMed  Google Scholar 

  12. Alavi, M. and Hamidi, M., Drug Metabol. Personalized Ther., 2019, vol. 34, p. 20180032 https://doi.org/10.1515/dmpt-2018-0032

    Article  CAS  Google Scholar 

  13. O’Reilly, R.K. and Pearce, A.K., Bioconjug. Chem., 2019, vol. 30, pp. 2300–2311. https://doi.org/10.1021/acs.bioconjchem.9b00456

    Article  CAS  PubMed  Google Scholar 

  14. Nahyeon, L., Yong, T.K., and Jechan, L., Polymers (Basel), 2021, vol. 13, p. 364. https://doi.org/10.3390/polym13030364

    Article  CAS  Google Scholar 

  15. Mikolasch, A. and Schauer, F., Appl. Microbiol. Biotechnol., 2009, vol. 82, pp. 605–624. https://doi.org/10.1007/s00253-009-1869-z

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, Y., You, X., Guan, S., Huang, J., Wang, L., Zhang, J., Wu, J., Adv. Funct. Mater., 2019, vol. 29, p. 1808646. https://doi.org/10.1002/adfm.201808646

    Article  CAS  Google Scholar 

  17. Leo, E., Cameroni, R., and Forni, F., Int. J. Pharm., 1999, vol. 180, pp. 23–30. https://doi.org/10.1016/s0378-5173(98)00401-3

    Article  CAS  PubMed  Google Scholar 

  18. Swietach, P., Vaughan-Jones, R.D., Harris, A.L., and Hulikova, A., Philos. Trans. R Soc. Lond. B Biol. Sci., 2014, vol. 369, p. 20130099. https://doi.org/10.1098/rstb.2013.0099

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ruan, G., Agrawal, A., Marcus, A.I., and Nie, S., J. Am. Chem. Soc., 2007, vol. 129, pp. 14759–14766. https://doi.org/10.1021/ja074936k

    Article  CAS  PubMed  Google Scholar 

  20. Efeoglu, E., Keating, M.E., McIntyre, J., Casey, A., and Byrne, H., Anal. Methods, 2015, vol. 7, pp. 10000– 10017. https://doi.org/10.1039/C5AY02661J

    Article  CAS  Google Scholar 

  21. Dai, X., Cheng, H., Bai, Z., and Li, J., J. Cancer, 2017, vol. 8, pp. 3131–3141. https://doi.org/

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xiao, M., Hasmim, M., Lequeux, A., Moer, K.V., Tan, T.Z., Gilles, C., Hollier, B.G., Thiery, J.P., Berchem, G., Janji, B., and Noman, M.Z., Cancers (Basel), 2021, vol. 13, p. 1165. https://doi.org/

    Article  CAS  PubMed  Google Scholar 

  23. Rystsov, G.K., Lisov, A.V., and Zemskova, M.Yu., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 65–78. https://doi.org/10.31857/S0132342322060197

    Article  Google Scholar 

  24. Guerrini, L., Alvarez-Puebla, R., and Pazos-Perez, N., Materials, 2018, vol. 11, p. 1154. https://doi.org/10.3390/ma11071154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to the writing of the article.

Corresponding authors

Correspondence to I. V. Smirnov or M. Y. Zemskova.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: DLS, dynamic light scattering; Dox, doxorubicin; PDI, poydispersity index; pDMF, 2,6-dimethoxy phenolic polymers; pFA, ferulic polymers; pGA, gentisic polymers; TEM, transmission electron microscopy; LSC, low-speed centrifugation; NP, nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, I.V., Lisov, A.V., Zvonarev, A.N. et al. Nanoparticles Based on Polyferulic and Polygentisic Acids as New Carriers of Anticancer Drugs. Russ J Bioorg Chem 50, 467–484 (2024). https://doi.org/10.1134/S1068162024020213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020213

Keywords:

Navigation