Skip to main content
Log in

Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422–434. https://doi.org/10.1038/nrmicro.2017.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705. https://doi.org/10.1016/j.arcmed.2005.06.009

    Article  PubMed  Google Scholar 

  3. De La Fuente-Nunez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589. https://doi.org/10.1016/j.mib.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  4. Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:1–10. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  5. Marshall KC, Stout R, Mitchell R (1971) Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348. https://doi.org/10.1099/00221287-68-3-337

    Article  CAS  Google Scholar 

  6. Nazir R, Zaffar MR, Amin I (2019) Bacterial biofilms: the remarkable heterogeneous biological communities and nitrogen fixing microorganisms in lakes. Freshw Microbiol. https://doi.org/10.1016/b978-0-12-817495-1.00008-6

    Article  Google Scholar 

  7. Watters C, Fleming D, Bishop D, Rumbaugh KP (2016) Host responses to biofilm. Prog Mol Biol Transl Sci 142:193–239. https://doi.org/10.1016/bs.pmbts.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Donlan RM (2002) Biofilms: microbial life on surfaces. Emer Infect Dis 8:881. https://doi.org/10.3201/eid0809.020063

    Article  Google Scholar 

  9. Shrestha L, Fan HM, Tao HR, Huang JD (2022) Recent strategies to combat biofilms using antimicrobial agents and therapeutic approaches. Pathogens 11:292. https://doi.org/10.3390/pathogens1103029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ciofu O, Moser C, Jensen PØ, Høiby N (2022) Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 20:621–635. https://doi.org/10.1038/s41579-022-00682-4

    Article  CAS  PubMed  Google Scholar 

  11. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11. https://doi.org/10.1016/j.jcma.2017.07.012

    Article  PubMed  Google Scholar 

  12. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409. https://doi.org/10.1038/s41579-018-0019-y

    Article  CAS  PubMed  Google Scholar 

  13. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  14. Abdelhamid AG, Yousef AE (2023) Combating bacterial biofilms: current and emerging antibiofilm strategies for treating persistent infections. Antibiotics 12:1005. https://doi.org/10.3390/antibiotics12061005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV (2017) Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J Med Microbiol 66:1506–1515. https://doi.org/10.1099/jmm.0.000570

    Article  CAS  PubMed  Google Scholar 

  16. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspect Med 3:a010306. https://doi.org/10.1101/cshperspect.a010306

    Article  CAS  Google Scholar 

  17. Yin W, Wang Y, Liu L, He J (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20:3423. https://doi.org/10.3390/ijms20143423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corrigan RM, Rigby D, Handley P, Foster TJ (2007) The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiol 153:2435–2446. https://doi.org/10.1128/JB.00628-10

    Article  CAS  Google Scholar 

  19. Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ, Penadés JR, Lasa I (2009) Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 191:832–843. https://doi.org/10.1128/JB.01222-08

    Article  CAS  PubMed  Google Scholar 

  20. Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB (2008) A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci USA 105:19456–19461. https://doi.org/10.1073/pnas.0807717105

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850. https://doi.org/10.1128/JB.00167-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Oss C, Good R, Chaudhury M (1986) The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 111:378–390. https://doi.org/10.1016/0021-9797(86)90041-X

    Article  Google Scholar 

  23. Matilla MA (2017) A technology for the investigation of biofilm transmission under shearing pressures. Microb Biotechnol 10:1451–1453. https://doi.org/10.1111/1751-7915.12848

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wille J, Coenye T (2020) Biofilm dispersion: The key to biofilm eradication or opening Pandora’s box? Biofilm 2:100027. https://doi.org/10.1016/j.bioflm.2020.100027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. BioMed Res Int. https://doi.org/10.1155/2013/150653

    Article  PubMed  Google Scholar 

  26. Das S, Dasgupta A, Chopra S (2016) Drug repurposing: a new front in the war against Staphylococcus aureus. Future Microbiol 11:1091–1099. https://doi.org/10.2217/fmb-2016-0021

    Article  CAS  PubMed  Google Scholar 

  27. Thangamani S, Mohammad H, Abushahba MF, Sobreira TJ, Hedrick VE, Paul LN, Seleem MN (2016) Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci Rep 6:22571. https://doi.org/10.1038/srep22571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perlmutter JI, Forbes LT, Krysan DJ, Ebsworth-Mojica K, Colquhoun JM, Wang JL, Dunman PM, Flaherty DP (2014) Repurposing the antihistamine terfenadine for antimicrobial activity against Staphylococcus aureus. J Med Chem 57:8540–8562. https://doi.org/10.1021/jm5010682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leão C, Borges A, Simões M (2020) NSAIDs as a drug repurposing strategy for biofilm control. Antibiotics 9:591. https://doi.org/10.3390/antibiotics9090591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng X, She P, Zhou L, Li S, Hussain Z, Chen L, Wu Y (2021) Drug repurposing: antimicrobial and antibiofilm effects of penfluridol against Enterococcus faecalis. MicrobiologyOpen 10:e1148. https://doi.org/10.1002/mbo3.1148

    Article  CAS  PubMed  Google Scholar 

  31. Wells CM, Beenken KE, Smeltzer MS, Courtney HS, Jennings JA, Haggard WO (2018) Ciprofloxacin and rifampin dual antibiotic-loaded biopolymer chitosan sponge for bacterial inhibition. Mil Med 183:433–444. https://doi.org/10.1093/milmed/usx150

    Article  PubMed  Google Scholar 

  32. Kamble E, Sanghvi P, Pardesi K (2022) Synergistic effect of antibiotic combinations on Staphylococcus aureus biofilms and their persister cell populations. Biofilm 4:100068. https://doi.org/10.1016/j.bioflm.2022.100068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwan BW, Chowdhury N, Wood TK (2015) Combatting bacterial infections by killing persister cells with mitomycin C. Env Microbiol 17:4406–4414. https://doi.org/10.1111/1462-2920.12873

    Article  CAS  Google Scholar 

  34. Chowdhury N, Wood TL, Martínez-Vázquez M, García-Contreras R, Wood TK (2016) DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 113:1984–1992. https://doi.org/10.1002/bit.25963

    Article  CAS  PubMed  Google Scholar 

  35. Akpolat NÖ, Elci S, Atmaca S, Akbayin H, Gül K (2003) The effects of magnesium, calcium and EDTA on slime production by Staphylococcus epidermidis strains. Folia Microbiol 48:649–653. https://doi.org/10.1007/BF02993473

    Article  CAS  Google Scholar 

  36. Abraham NM, Lamlertthon S, Fowler VG, Jefferson KK (2012) Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. J Med Microbiol 61:1062. https://doi.org/10.1099/jmm.0.040758-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu X, Wang Y, Tao L (2011) Sulfhydryl compounds reduce Staphylococcus aureus biofilm formation by inhibiting PIA biosynthesis. FEMS Microbiol Lett 316:44–50. https://doi.org/10.1111/j.1574-6968.2010.02190.x

    Article  CAS  PubMed  Google Scholar 

  38. Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:7. https://doi.org/10.3389/fcimb.2015.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother 52:612–618. https://doi.org/10.1128/AAC.00836-07

    Article  CAS  PubMed  Google Scholar 

  40. Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, Arslan-Acaroz D, Shah SR, Gerlach R (2022) An overview of biofilm formation–combating strategies and mechanisms of action of antibiofilm agents. Life 12:1110. https://doi.org/10.3390/life12081110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hostacká A, Ciznár I (2008) Aminoglycosides and colistin inhibit biofilm formation in Klebsiella pneumoniae. Epidemiol Mikrobiol Imunol 57:101–105 (PMID: 18767377)

    PubMed  Google Scholar 

  42. Abdel-Aziz SM, Aeron A (2014) Bacterial biofilm: dispersal and inhibition strategies. SAJ Bio-Technol 1:105. https://doi.org/10.18875/2375-6713.1.105

    Article  Google Scholar 

  43. Ohta K, Komatsuzawa H, Sugai M, Suginaka H (2000) Triton X-100-induced lipoteichoic acid release is correlated with the methicillin resistance in Staphylococcus aureus. FEMS Microbiol Lett 182:77–79. https://doi.org/10.1111/j.1574-6968.2000.tb08877.x

    Article  CAS  PubMed  Google Scholar 

  44. Komatsuzawa H, Suzuki J, Sugai M, Miyake Y, Suginaka H (1994) The effect of Triton X-100 on the in-vitro susceptibility of methicillin-resistant Staphylococcus aureus to oxacillin. J Antimicrob Chemother 34:885–897. https://doi.org/10.1093/jac/34.6.885

    Article  CAS  PubMed  Google Scholar 

  45. Allegrone G, Ceresa C, Rinaldi M, Fracchia L (2021) Diverse effects of natural and synthetic surfactants on the inhibition of Staphylococcus aureus biofilm. Pharmaceutics 13:1172. https://doi.org/10.3390/pharmaceutics13081172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silva SS, Carvalho JW, Aires CP, Nitschke M (2017) Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J Dairy Sci 100:7864–7873. https://doi.org/10.3168/jds.2017-13012

    Article  CAS  PubMed  Google Scholar 

  47. Dalili D, Amini M, Faramarzi MA, Fazeli MR, Khoshayand MR, Samadi N (2015) Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf B Biointerfaces 135:425–432. https://doi.org/10.1016/j.colsurfb.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  48. Balan SS, Kumar CG, Jayalakshmi S (2016) Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: purification, characterization and its biological evaluation. Process Biochem 51:2198–2207. https://doi.org/10.1016/j.procbio.2016.09.009

    Article  CAS  Google Scholar 

  49. Luís Â, Silva F, Sousa S, Duarte AP, Domingues F (2014) Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 30:69–79. https://doi.org/10.1080/08927014.2013.845878

    Article  CAS  PubMed  Google Scholar 

  50. Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR (2013) Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect Immun 81:496–504. https://doi.org/10.1128/iai.00877-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morán A, Gutiérrez S, Martínez-Blanco H, Ferrero MA, Monteagudo-Mera A, Rodríguez-Aparicio LB (2014) Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling 30:1175–1182. https://doi.org/10.1080/08927014.2014.976207

    Article  CAS  PubMed  Google Scholar 

  52. Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14:11. https://doi.org/10.1186/s13020-019-0232-2

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tapia-Rodriguez MR, Bernal-Mercado AT, Gutierrez-Pacheco MM, Vazquez-Armenta FJ, Hernandez-Mendoza A, Gonzalez-Aguilar GA, Martinez-Tellez MA, Nazzaro F, Ayala-Zavala JF (2019) Virulence of Pseudomonas aeruginosa exposed to carvacrol: alterations of the Quorum sensing at enzymatic and gene levels. J Cell Commun Signal 13:531–537. https://doi.org/10.1007/s12079-019-00516-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Song M, Pan J, Shen X, Liu W, Zhang X, Li H, Deng X (2018) Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J Cell Mol Med 22:6228–6237. https://doi.org/10.1111/jcmm.13910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Magesh H, Kumar A, Alam A, Sekar U (2013) Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 51:764–772 (PMID:24377137)

    CAS  PubMed  Google Scholar 

  56. Raorane CJ, Lee JH, Kim YG, Rajasekharan SK, Garcia-Contreras R, Lee J (2019) Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front Microbiol 10:990. https://doi.org/10.3389/fmicb.2019.00990

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arita-Morioka KI, Yamanaka K, Mizunoe Y, Tanaka Y, Ogura T, Sugimoto S (2018) Inhibitory effects of Myricetin derivatives on curli-dependent biofilm formation in Escherichia coli. Sci Rep 8:8452. https://doi.org/10.1038/s41598-018-26748-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Branco-de-Almeida LS, Murata RM, Franco EM, Dos Santos MH, De Alencar SM, Koo H (2011) Effects of 7-epiclusianone on Streptococcus mutans and caries development in rats. Planta Med 77:40–45. https://doi.org/10.1055/s-0030-1250121

    Article  CAS  PubMed  Google Scholar 

  59. Murata RM, Branco-de-Almeida LS, Franco EM, Yatsuda R, Dos Santos MH, De Alencar SM (2010) Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride. Biofouling 26:865–872. https://doi.org/10.1080/08927014.2010.52743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mu H, Tang J, Liu Q, Sun C, Wang T, Duan J (2016) Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci Rep 6:18877. https://doi.org/10.1038/srep18877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan F, Lee JW, Pham DN, Khan MM, Park SK, Shin IS, Kim YM (2020) Antibiofilm action of ZnO, SnO2 and CeO2 nanoparticles towards Grampositive biofilm forming pathogenic bacteria. Recent Pat Nanotechnol 14:239–249. https://doi.org/10.2174/1872210514666200313121953

    Article  CAS  PubMed  Google Scholar 

  63. Ramasamy M, Lee JH, Lee J (2017) Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B: Biointerfaces 160:639–648. https://doi.org/10.1016/j.colsurfb.2017.10.018

    Article  CAS  PubMed  Google Scholar 

  64. Anjugam M, Vaseeharan B, Iswarya A, Divya M, Prabhu NM, Sankaranarayanan K (2018) Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microb Pathog 115:31–40. https://doi.org/10.1016/j.micpath.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  65. Shi SF, Jia JF, Guo XK, Zhao YP, Chen DS, Guo YY, Zhang XL (2016) Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. Int J Nanomed 11:6499. https://doi.org/10.2147/IJN.S41371

    Article  CAS  Google Scholar 

  66. Trzcińska-Wencel J, Wypij M, Rai M, Golińska P (2023) Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Front Microbiol 14:1125685. https://doi.org/10.3389/fmicb.2023.1125685

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett 4:34–39. https://doi.org/10.1007/BF03353689

    Article  Google Scholar 

  68. Mousavi SM, Mousavi SMA, Moeinizadeh M, Aghajanidelavar M, Rajabi S, Mirshekar M (2023) Evaluation of biosynthesized silver nanoparticles effects on expression levels of virulence and biofilm-related genes of multidrug-resistant Klebsiella pneumoniae isolates. J Basic Microbiol 63:632–645. https://doi.org/10.1002/jobm.202200612

    Article  CAS  PubMed  Google Scholar 

  69. Lee JH, Kim YG, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169:888–896. https://doi.org/10.1016/j.micres.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  70. Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomed 1:1175–1188. https://doi.org/10.2147/IJN.S26770

    Article  CAS  Google Scholar 

  71. Lellouche J, Friedman A, Gedanken A, Banin E (2012) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomed 8:5611–5624. https://doi.org/10.2147/IJN.S37075

    Article  CAS  Google Scholar 

  72. Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU (2016) Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 100:1901–1914. https://doi.org/10.1007/s00253-015-7154-4

    Article  CAS  PubMed  Google Scholar 

  73. Yasir M, Willcox MD, Dutta D (2018) Action of antimicrobial peptides against bacterial biofilms. Materials 11:2468. https://doi.org/10.3390/ma11122468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rajput A, Kumar M (2018) Anti-biofilm peptides: a new class of quorum quenchers and their prospective therapeutic applications: biotechnological applications of quorum sensing inhibitors. Singapore: Springer, pp 87–110. https://doi.org/10.1007/978-981-10-9026-4_5

  75. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554. https://doi.org/10.1080/21505594.2017.1313372

    Article  CAS  PubMed  Google Scholar 

  76. Andrea A, Molchanova N, Jenssen H (2018) Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomolecules 8:27. https://doi.org/10.3390/biom8020027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang N, Teng D, Mao R, Hao Y, Wang X, Wang Z, Wang X, Wang J (2019) A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms. Appl Microbiol Biotechnol 103:5193–5213. https://doi.org/10.1007/s00253-019-09785-0

    Article  CAS  PubMed  Google Scholar 

  78. Wei G, He Y (2022) Antibacterial and antibiofilm activities of novel cyclic peptides against methicillin-resistant Staphylococcus aureus. Int J Mol Sci 23:8029. https://doi.org/10.3390/ijms23148029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30:435–446. https://doi.org/10.1080/08927014.2014.888062

    Article  CAS  PubMed  Google Scholar 

  80. Ansari JM, Abraham NM, Massaro J, Murphy K, Smith-Carpenter J, Fikrig E (2017) Anti-biofilm activity of a self-aggregating peptide against Streptococcus mutans. Front Microbiol 8:488. https://doi.org/10.3389/fmicb.2017.00488

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kharidia R, Liang JF (2011) The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 49:663–668. https://doi.org/10.1007/s12275-011-1013-5

    Article  CAS  PubMed  Google Scholar 

  82. Quilès F, Saadi S, Francius G, Bacharouche J, Humbert F (2016) In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. Biochim Biophys Acta-Biomembr 1858:75–84. https://doi.org/10.1016/j.bbamem.2015.10.015

    Article  CAS  Google Scholar 

  83. Otvos LOI, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochem 39:14150–14159. https://doi.org/10.1021/bi0012843

    Article  CAS  Google Scholar 

  84. Kragol G, Hoffmann R, Chattergoon MA, Lovas S, Cudic M, Bulet P, Condie BA, Rosengren KJ, Montaner LJ, Otvos L Jr (2002) Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem 269:4226–4237. https://doi.org/10.1046/j.1432-1033.2002.03119.x

    Article  CAS  PubMed  Google Scholar 

  85. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochem 40:3016–3026. https://doi.org/10.1021/bi002656a

    Article  CAS  Google Scholar 

  86. De La Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704. https://doi.org/10.1128/AAC.00064-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182. https://doi.org/10.1128/IAI.00318-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Okuda KI, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57:5572–5579. https://doi.org/10.1128/aac.00888-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu C, Tan H, Cheng T, Shen H, Shao J, Guo Y, Shi S, Zhang X (2013) Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J Surg Res 183:204–213. https://doi.org/10.1016/j.jss.2012.11.048

    Article  CAS  PubMed  Google Scholar 

  90. Vizan JL, Hernandez-Chico C, Del Castillo I, Moreno F (1991) The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J 10:467–476. https://doi.org/10.1002/j.1460-2075.1991.tb07969.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984. https://doi.org/10.1128/iai.61.7.2978-2984.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De La Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152. https://doi.org/10.1371/journal.ppat.1004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. De La Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock EW (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22:196–205. https://doi.org/10.1016/j.chembiol.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoon BK, Jackman JA, Valle-González ER, Cho NJ (2018) Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci 19:1114. https://doi.org/10.3390/ijms19041114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Oh DH, Marshall DL (1995) Destruction of Listeria monocytogenes biofilms on stainless steel using monolaurin and heat. J Food Prot 58:251–255. https://doi.org/10.4315/0362-028X-58.3.251

    Article  PubMed  Google Scholar 

  96. Schlievert PM, Peterson ML (2012) Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLoS ONE 7:e40350. https://doi.org/10.1371/journal.pone.0040350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lopes LQS, De Almeida VR, Giongo JL, Gündel A, Santos RCV (2019) Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules against Pseudomonas aeruginosa. Microbial Pathog 130:178–185. https://doi.org/10.1016/j.micpath.2019.03.007

    Article  CAS  Google Scholar 

  98. Yuyama KT, Rohde M, Molinari G, Stadler M, Abraham WR (2020) Unsaturated fatty acids control biofilm formation of Staphylococcus aureus and other Gram-positive bacteria. Antibiotics 9:788. https://doi.org/10.3390/antibiotics9110788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee JH, Kim YG, Lee J (2022) Inhibition of Staphylococcus aureus biofilm formation and virulence factor production by petroselinic acid and other unsaturated C18 fatty acids. Microbiol Spectr 10:e01330-e1422. https://doi.org/10.1128/spectrum.01330-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun M, Dong J, Xia Y, Shu R (2017) Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans. Microb Pathogen 107:212–218. https://doi.org/10.1016/j.micpath.2017.03.040

    Article  CAS  Google Scholar 

  101. Howard KC, Gonzalez OA, Garneau-Tsodikova S (2021) Porphyromonas gingivalis: where do we stand in our battle against this oral pathogen? RSC Med Chem 12:666–704. https://doi.org/10.1039/D0MD00424C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lequette Y, Boels G, Clarisse M, Faille C (2010) Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26:421–431. https://doi.org/10.1080/08927011003699535

    Article  CAS  PubMed  Google Scholar 

  103. Borges A, Meireles A, Mergulhao F, Melo L, Simoes M (2020) Biofilm control with enzymes. In: Recent trends in biofilm science and technology, pp 249–271. https://doi.org/10.1016/B978-0-12-819497-3.00011-8

  104. Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilms. Appl Env Microbiol 63:3724–3728. https://doi.org/10.1128/aem.63.9.3724-3728.1997

    Article  CAS  Google Scholar 

  105. Meireles A, Borges A, Giaouris E, Simões M (2016) The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int 86:140–146. https://doi.org/10.1016/j.foodres.2016.06.006

    Article  CAS  Google Scholar 

  106. Nahar S, Mizan MF, Ha AJ, Ha SD (2018) Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf 17:1484–1502. https://doi.org/10.1111/1541-4337.12382

    Article  PubMed  Google Scholar 

  107. Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8:97–109. https://doi.org/10.1002/biot.201200313

    Article  CAS  PubMed  Google Scholar 

  108. Kokai-Kun JF, Chanturiya T, Mond JJ (2009) Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother 64:94–100. https://doi.org/10.1093/jac/dkp145

    Article  CAS  PubMed  Google Scholar 

  109. Algburi A, Comito N, Kashtanov D, Dicks LM, Chikindas ML (2017) Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 83:e02508-e2516. https://doi.org/10.1128/AEM.02508-16

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, Bayles KW, Horswill AR (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS ONE 6:e26714. https://doi.org/10.1371/journal.pone.0026714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740. https://doi.org/10.1128/aac.01249-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209. https://doi.org/10.1128/aac.00471-08

    Article  CAS  PubMed  Google Scholar 

  113. Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of α-amylase from Bacillus subtilis S8–18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167:1778–1794. https://doi.org/10.1007/s12010-011-9526-2

    Article  CAS  PubMed  Google Scholar 

  114. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349. https://doi.org/10.1038/nature09074

    Article  CAS  PubMed  Google Scholar 

  115. Sugimoto S, Iwamoto T, Takada K, Okuda KI, Tajima A, Iwase T, Mizunoe Y (2013) Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 195:1645–1655. https://doi.org/10.1128/jb.01672-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, Leeuwen WB, Jabalameli F (2016) Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PLoS ONE 11:e0164622. https://doi.org/10.1371/journal.pone.0164622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–138. https://doi.org/10.1111/j.1600-0463.2006.apm_356.x

    Article  CAS  PubMed  Google Scholar 

  118. Loiselle M, Anderson KW (2003) The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling 19:77–85. https://doi.org/10.1080/0892701021000030142

    Article  CAS  PubMed  Google Scholar 

  119. Bridgett MJ, Davies MC, Denyer SP (1992) Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials 13:411–416. https://doi.org/10.1016/0142-9612(92)90159-L

    Article  CAS  PubMed  Google Scholar 

  120. Chauhan A, Bernardin A, Mussard W, Kriegel I, Estève M, Ghigo JM, Beloin C, Semetey V (2014) Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters. J Infect Dis 210:1347–1356. https://doi.org/10.1093/infdis/jiu249

    Article  CAS  PubMed  Google Scholar 

  121. Lorenzetti M, Dogša I, Stošicki T, Stopar D, Kalin M, Kobe S, Novak S (2015) The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces 7:1644–1651. https://doi.org/10.1021/am507148n

    Article  CAS  PubMed  Google Scholar 

  122. Xu LC, Wo Y, Meyerhoff ME, Siedlecki CA (2017) Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomater 51:53–65. https://doi.org/10.1016/j.actbio.2017.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vaishampayan A, De Jong A, Wight DJ, Kok J, Grohmann E (2018) A novel antimicrobial coating represses biofilm and virulence-related genes in methicillin-resistant Staphylococcus aureus. Front Microbiol 9:221. https://doi.org/10.3389/fmicb.2018.0021

    Article  PubMed  PubMed Central  Google Scholar 

  124. Artini M, Cicatiello P, Ricciardelli A, Papa R, Selan L, Dardano P, Tilotta M, Vrenna G, Tutino ML, Giardina P (2017) Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces. Biofouling 33:601–611. https://doi.org/10.1080/08927014.2017.1338690

    Article  CAS  PubMed  Google Scholar 

  125. Xu Y, Jones JE, Yu H, Yu Q, Christensen GD, Chen M, Sun H (2015) Nanoscale plasma coating inhibits formation of Staphylococcus aureus Biofilm. Antimicrob Agents Chemother 59:7308–7315. https://doi.org/10.1128/aac.01944-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bottino MA, Pereira SM, Amaral M, Milhan NV, Pereira CA, Camargo SE, Carvalho AB, Melo RM (2019) Streptococcus mutans biofilm formation and cell viability on polymer-infiltrated ceramic and yttria-stabilized polycrystalline zirconium dioxide ceramic. Oper Dent 44:E271–E278. https://doi.org/10.2341/18-278-L

    Article  CAS  PubMed  Google Scholar 

  127. Antoci V Jr, King SB, Jose B, Parvizi J, Zeiger AR, Wickstrom E, Freeman TA, Composto RJ, Ducheyne P, Shapiro IM, Hickok NJ (2007) Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J Orthop Res 25:858–866. https://doi.org/10.1002/jor.20348

    Article  CAS  PubMed  Google Scholar 

  128. Ferriol-González C, Domingo-Calap P (2020) Phages for biofilm removal. Antibiotics 9:268. https://doi.org/10.3390/antibiotics9050268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+ C content. J Bacteriol 186:2862–2871. https://doi.org/10.1128/jb.186.9.2862-2871.2004

    Article  PubMed  PubMed Central  Google Scholar 

  130. Melo LD, Oliveira H, Pires DP, Dabrowska K, Azeredo J (2020) Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 46:78–99. https://doi.org/10.1080/1040841X.2020.1729695

    Article  CAS  PubMed  Google Scholar 

  131. Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M (2017) Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother 61:e02666-e2716. https://doi.org/10.1128/aac.02666-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rakov C, Ben Porat S, Alkalay-Oren S, Yerushalmy O, Abdalrhman M, Gronovich N, Huang L, Pride D, Coppenhagen-Glazer S, Nir-Paz R (2021) Targeting biofilm of MDR Providencia stuartii by phages using a catheter model. Antibiotics 10:375. https://doi.org/10.3390/antibiotics10040375

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ben-Zaken H, Kraitman R, Coppenhagen-Glazer S, Khalifa L, Alkalay-Oren S, Gelman D, Ben-Gal G, Beyth N, Hazan R (2021) Isolation and characterization of Streptococcus mutans phage as a possible treatment agent for caries. Viruses 13:825. https://doi.org/10.3390/v13050825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nale JY, Clokie MR (2021) Preclinical data and safety assessment of phage therapy in humans. Curr Opin Biotechnol 68:310–317. https://doi.org/10.1016/j.copbio.2021.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins AT (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703. https://doi.org/10.1128/AEM.01789-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kifelew LG, Warner MS, Morales S, Thomas N, Gordon DL, Mitchell JG, Speck PG (2020) Efficacy of lytic phage cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in mixed-species planktonic cultures and biofilms. Viruses 12:559. https://doi.org/10.3390/v12050559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Askoura M, Saed N, Enan G, Askora A (2021) Characterization of polyvalent bacteriophages targeting multidrug-resistant Klebsiella pneumonia with enhanced anti-biofilm activity. Appl Biochem Microbiol 57:117–126. https://doi.org/10.1134/S000368382101004X

    Article  CAS  Google Scholar 

  138. Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA (2017) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas Aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215:703–712. https://doi.org/10.1093/infdis/jiw632

    Article  CAS  PubMed  Google Scholar 

  139. Amankwah S, Abdella K, Kassa T (2021) Bacterial biofilm destruction: a focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnol Sci Appl 14:161–177. https://doi.org/10.2147/NSA.S325594

    Article  PubMed  PubMed Central  Google Scholar 

  140. Park DW, Park JH (2021) Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces. J Microbiol 59:1002–1009. https://doi.org/10.1007/s12275-021-1413-0

    Article  CAS  PubMed  Google Scholar 

  141. Wu YQ, Wang R, Xu MS, Liu YN, Zhu XC, Qiu JF, Liu QM, He P, Li QT (2019) A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10:2768. https://doi.org/10.3389/fmicb.2019.02768

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chen X, Liu M, Zhang PF, Leung SSY, Xia J (2021) Membrane-permeable antibacterial enzyme against multidrug-resistant Acinetobacter baumannii. Acs Infect Dis 7:2192–2204. https://doi.org/10.1021/acsinfecdis.1c00222

    Article  CAS  PubMed  Google Scholar 

  143. Ning H, Lin H, Wang J, He X, Lv X, Ju L (2021) Characterizations of the endolysin Lys84 and its domains from phage qdsa002 with high activities against Staphylococcus aureus and its biofilms. Enzyme Microb Technol 148:109809. https://doi.org/10.1016/j.enzmictec.2021.109809

    Article  CAS  PubMed  Google Scholar 

  144. Fursov MV, Abdrakhmanova RO, Antonova NP, Vasina DV, Kolchanova AD, Bashkina OA, Rubalsky OV, Samotrueva MA, Potapov VD, Makarov VV, Yudin SM (2020) Antibiofilm activity of a broad-range recombinant endolysin LysECD7: in vitro and in vivo study. Viruses 12:545. https://doi.org/10.3390/v12050545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293. https://doi.org/10.1128/aac.04641-14

    Article  PubMed  PubMed Central  Google Scholar 

  146. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, Kluskens LD, Azeredo J (2014) A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS ONE 9:e108376. https://doi.org/10.1371/journal.pone.0108376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu J, Yang H, Bi Y, Li W, Wei H, Li Y (2018) Activity of the chimeric lysin ClyR against common Gram-positive oral microbes and its anticaries efficacy in rat models. Viruses 10:380. https://doi.org/10.3390/v10070380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shen Y, Köller T, Kreikemeyer B, Nelson DC (2013) Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage encoded endolysin. J Antimicrob Chemother 68:1818–1824. https://doi.org/10.1093/jac/dkt104

    Article  CAS  PubMed  Google Scholar 

  149. Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW (2015) Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 59:1983–1991. https://doi.org/10.1128/AAC.04641-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24. https://doi.org/10.1016/j.cell.2012.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sherwood AV, Henkin TM (2016) Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annu Rev Microbiol 70:361–374. https://doi.org/10.1146/annurev-micro-091014-104306

    Article  CAS  PubMed  Google Scholar 

  152. Panchal V, Brenk R (2021) Riboswitches as drug targets for antibiotics. Antibiotics 10:45. https://doi.org/10.3390/antibiotics10010045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52. https://doi.org/10.1128/mmbr.00043-12

    Article  PubMed  PubMed Central  Google Scholar 

  154. Reyes-Darias A, Krell T (2017) Riboswitches as potential targets for the development of anti-biofilm drugs. Curr Top in Med Chem 17:1945–1953. https://doi.org/10.2174/1568026617666170407163517

    Article  CAS  Google Scholar 

  155. Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA (2015) Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer. Molecules 20:10604–10621. https://doi.org/10.3390/molecules200610604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pérez C, Zúñiga T, Palavecino CE (2021) Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagn Photodyn Ther 34:102285. https://doi.org/10.1016/j.pdpdt.2021.102285

    Article  CAS  Google Scholar 

  157. Rosa LP, da Silva FC, Nader SA, Meira GA, Viana MS (2015) Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: an in vitro study. Arch Oral Biol 60:675–680. https://doi.org/10.1016/j.archoralbio.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  158. Mai B, Wang X, Liu Q, Leung AW, Wang X, Xu C, Wang P (2016) The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med 48:400–408. https://doi.org/10.1002/lsm.22468

    Article  PubMed  Google Scholar 

  159. Park JH, Ahn MY, Kim YC, Kim SA, Moon YH, Ahn SG, Yoon JH (2012) In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29. Biol Pharm Bull 35:509–514. https://doi.org/10.1248/bpb.35.509

    Article  CAS  PubMed  Google Scholar 

  160. Zhang QZ, Zhao KQ, Wu Y, Li XH, Yang C, Guo LM, Liu CH, Qu D, Zheng CQ (2017) 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS ONE 12:e0174627. https://doi.org/10.1371/journal.pone.0174627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li M, Li L, Su K, Liu X, Zhang T, Liang Y, Jing D, Yang X, Zheng D, Cui Z, Li Z (2019) Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv Sci 6:1900599. https://doi.org/10.1002/advs.201900599

    Article  CAS  Google Scholar 

  162. Giersing BK, Dastgheyb SS, Modjarrad K, Moorthy V (2016) Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine 34:2962–2966. https://doi.org/10.1016/j.vaccine.2016.03.110

    Article  CAS  PubMed  Google Scholar 

  163. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755. https://doi.org/10.1038/nrmicro.2017.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Parastan R, Kargar M, Solhjoo K, Kafilzadeh F (2020) Staphylococcus aureus biofilms: structures, antibiotic resistance, inhibition, and vaccines. Gene Rep 20:100739. https://doi.org/10.1016/j.genrep.2020.100739

    Article  CAS  Google Scholar 

  165. O’Rourke JP, Daly SM, Triplett KD, Peabody D, Chackerian B, Hall PR (2014) Development of a mimotope vaccine targeting the Staphylococcus aureus quorum sensing pathway. PLoS ONE 9:e111198. https://doi.org/10.1371/journal.pone.0111198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lam H, Kesselly A, Stegalkina S, Kleanthous H, Yethon JA (2014) Antibodies to PhnD inhibit staphylococcal biofilms. Infect Immun 82:3764–3774. https://doi.org/10.1128/iai.02168-14

    Article  PubMed  PubMed Central  Google Scholar 

  167. Estellés A, Woischnig AK, Liu K, Stephenson R, Lomongsod E, Nguyen D, Zhang J, Heidecker M, Yang Y, Simon RJ, Tenorio E (2016) A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother 60:2292–2301. https://doi.org/10.1128/aac.02588-15

    Article  PubMed  PubMed Central  Google Scholar 

  168. Xiong YQ, Estellés A, Li L, Abdelhady W, Gonzales R, Bayer AS, Tenorio E, Leighton A, Ryser S, Kauvar LM (2017) A human biofilm-disrupting monoclonal antibody potentiates antibiotic efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumannii infections. Antimicrob Agents Chemother 61:e00904-e917. https://doi.org/10.1128/aac.00904-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475. https://doi.org/10.1128/jb.186.14.4466-4475.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P, Minter R, Camara MM, Venkatraman V, MacGill RS, Lin J (2012) Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Exp Med 209:1273–1287. https://doi.org/10.1084/jem.20120033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to the National Institute of Pharmaceutical Education and Research (NIPER), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Kolkata, India, for providing the infrastructural facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Mohan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Jangra, B., Ashok, G. et al. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01221-w

Keywords

Navigation