Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of a High Cr Oxide Dispersion-Strengthened Steel through STARS Route Followed by Hot Isostatic Pressing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened (ODS) ferritic steels are promising materials for fuel cladding and structural applications in the next-generation nuclear reactor owing to their excellent performance at high temperatures. The ultra-fine grain size and high number of density nano-oxide particles were important reasons for its excellent performance. Mechanical alloying pre-alloyed with Y2O3 followed by hot isostatic pressing (HIP) is the traditional process to produce the ODS steel, but scale production of the ODS steel was restricted owing to the low efficiency of the MA process for powder preparation. Precursor powders containing Y and O could be obtained via STARS (surface treatment of gas-atomized powder followed by reactive synthesis) route, which improved productivity, and made it possible to scale production in the industrial of ODS steel. In this study, a high Cr and high Al ODS steel with different oxygen contents was fabricated based on precursor powders fabricated through STARS followed by HIP. The microstructure of precursor powder and as-HIPed materials for the ODS steel was characterized, and tensile properties at different temperatures were tested. The evolution mechanism of the second-phase particles and its influence on the tensile properties were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data and Code Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Y. Zhang, B. Liu, R. Zhang, H. Liu, Y. Cao, J. Li, Q. Fang and Y. Liu, Development of Oxide Dispersion Strengthened Ferritic Steel with Enhanced Strength–Ductility Combination Through Dispersion Strengthening and Back Stress Hardening, J. Market. Res., 2023, 23, p 1386–1396.

    CAS  Google Scholar 

  2. X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang and M. Nastasi, Radiation Damage in Nanostructured Materials, Prog. Mater. Sci., 2018, 96, p 217–321.

    Article  Google Scholar 

  3. S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan and H. Tanigawa, Development of Next Generation Tempered and ODS Reduced Activation Ferritic/Martensitic Steels for fusion energy applications, Nuclear Fusion, 2017, 57(9), p 092005.

    Article  Google Scholar 

  4. J. Knaster, A. Moeslang and T. Muroga, Materials Research for Fusion, Nat. Phys., 2016, 12(5), p 424–434.

    Article  CAS  Google Scholar 

  5. S.J. Zinkle and L.L. Snead, Designing Radiation Resistance in Materials for Fusion Energy, Annu. Rev. Mater. Res., 2014, 44(1), p 241–267.

    Article  CAS  Google Scholar 

  6. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Wang, S. Xu, H. Jia, Z. Tong and Z. Zhou, Influence of Zr Addition on the Microstructure and Mechanical Properties of 9CrTi-ODS Steels, Nuclear Mater. Energy, 2021, 29, p 101101.

    Article  CAS  Google Scholar 

  8. Q. Zhao, L. Yu, Y. Liu, Y. Huang, Z. Ma, H. Li and J. Wu, Microstructure and Tensile Properties of a 14Cr ODS Ferritic Steel, Mater. Sci. Eng. A, 2017, 680, p 347–350.

    Article  CAS  Google Scholar 

  9. J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom and J.K. Hong, Temperature Dependence of Strengthening Mechanisms in the Nanostructured Ferritic Alloy 14YWT: Part II—Mechanistic Models and Predictions, Mater. Sci. Eng. A, 2013, 559, p 111–118.

    Article  CAS  Google Scholar 

  10. J.H. Kim, T.S. Byun, D.T. Hoelzer, S.-W. Kim and B.H. Lee, Temperature Dependence of Strengthening Mechanisms in the Nanostructured Ferritic Alloy 14YWT: Part I—Mechanical and Microstructural Observations, Mater. Sci. Eng. A, 2013, 559, p 101–110.

    Article  CAS  Google Scholar 

  11. M.E. Alam, S. Pal, S.A. Maloy and G.R. Odette, On Delamination Toughening of a 14YWT Nanostructured Ferritic Alloy, Acta Mater., 2017, 136, p 61–73.

    Article  CAS  Google Scholar 

  12. A. Hirata, T. Fujita, C.T. Liu and M.W. Chen, Characterization of Oxide Nanoprecipitates in an Oxide Dispersion Strengthened 14YWT Steel Using Aberration-Corrected STEM, Acta Mater., 2012, 60(16), p 5686–5696.

    Article  CAS  Google Scholar 

  13. J.R.O. Leo, S. Pirfo Barroso, M.E. Fitzpatrick, M. Wang and Z. Zhou, Microstructure, Tensile and Creep Properties of an Austenitic ODS 316L Steel, Mater. Sci. Eng. A, 2019, 749, p 158–165.

    Article  CAS  Google Scholar 

  14. M. Bruchhausen, K. Turba, F. de Haan, P. Hähner, T. Austin and Y. de Carlan, Characterization of a 14Cr ODS Steel by Means of Small Punch and Uniaxial Testing with Regard to Creep and Fatigue at Elevated Temperatures, J. Nucl. Mater., 2014, 444(1–3), p 283–291.

    Article  CAS  Google Scholar 

  15. Y. Sugino, S. Ukai, B. Leng, N. Oono, S. Hayashi, T. Kaito and S. Ohtsuka, Grain Boundary Related Deformation in ODS Ferritic Steel During Creep Test, Mater. Trans., 2012, 53(10), p 1753–1757.

    Article  CAS  Google Scholar 

  16. H. Salmon-Legagneur, S. Vincent, J. Garnier, A.F. Gourgues-Lorenzon and E. Andrieu, Anisotropic Intergranular Damage Development and Fracture in a 14Cr Ferritic ODS Steel Under High-Temperature Tension and Creep, Mater. Sci. Eng. A, 2018, 722, p 231–241.

    Article  CAS  Google Scholar 

  17. S. Li, Z. Zhou, J. Jang, M. Wang, H. Hu, H. Sun, L. Zou, G. Zhang and L. Zhang, The Influence of Cr Content on the Mechanical Properties of ODS Ferritic Steels, J. Nucl. Mater., 2014, 455(1–3), p 194–200.

    Article  CAS  Google Scholar 

  18. E. Gil, N. Ordás, C. García-Rosales and I. Iturriza, ODS Ferritic Steels Produced by an Alternative Route (STARS): Microstructural Characterisation After Atomisation, HIPping and heat treatments, Powder Metall, 2016, 59(5), p 359–369.

    Article  CAS  Google Scholar 

  19. S. Cong, Y. Gao, Z. Liu, W. Peng, Y. Zhang, L. Ma, Z. Zhou, L. Zhang and X. Guo, Role of Al Addition and Y2O3 on the Intergranular Corrosion Behavior of AFA-ODS Steel in the Supercritical Water, Mater. Design, 2022, 224, p 111386.

    Article  CAS  Google Scholar 

  20. J. Ren, L. Yu, C. Liu, Z. Ma, H. Li, Z. Wang, Y. Liu and H. Wang, Effects of Al Addition on High Temperature Oxidation Behavior of 16Cr ODS Steel, Corros. Sci., 2022, 195, p 110008.

    Article  CAS  Google Scholar 

  21. M. Wang, Z. Zhou, H. Sun, H. Hu and S. Li, Microstructural Observation and Tensile Properties of ODS-304 Austenitic Steel, Mater. Sci. Eng. A, 2013, 559, p 287–292.

    Article  CAS  Google Scholar 

  22. A. Meza, E. Macía, P. Chekhonin, E. Altstadt, M.E. Rabanal, J.M. Torralba and M. Campos, The Effect of Composition and Microstructure on the Creep Behaviour of 14 Cr ODS Steels Consolidated by SPS, Mater. Sci. Eng. A, 2022, 849, p 143441.

    Article  CAS  Google Scholar 

  23. H. Jia, R. Zhang, D. Long, Y. Sun and Z. Zhou, Effect of Zirconium Content On Mechanical Properties of ODS FeCrAl Alloy, Mater. Sci. Eng. A, 2022, 839, p 142824.

    Article  CAS  Google Scholar 

  24. C.P. Massey, P.D. Edmondson, M.N. Gussev, K. Mao, T. Gräning, T.J. Nizolek, S.A. Maloy, D. Sornin, Y. de Carlan, S.N. Dryepondt and D.T. Hoelzer, Insights from Microstructure and Mechanical Property Comparisons of Three Pilgered Ferritic ODS Tubes, Mater. Des., 2022, 213, p 110333.

    Article  CAS  Google Scholar 

  25. F. Qian, S. Jin, G. Sha and Y. Li, Enhanced Dispersoid Precipitation and Dispersion Strengthening in an Al Alloy by Microalloying with Cd, Acta Mater., 2018, 157, p 114–125.

    Article  CAS  Google Scholar 

  26. Z. Shi and F. Han, The Microstructure and Mechanical Properties of Micro-Scale Y2O3 Strengthened 9Cr Steel Fabricated by Vacuum Casting, Mater. Design, 2015, 1980–2015(66), p 304–308.

    Article  Google Scholar 

  27. L. Verma and V.V. Dabhade, Synthesis of Fe-15Cr-2W Oxide Dispersion Strengthened (ODS) Steel Powders by Mechanical Alloying, Powder Technol., 2023, 425, p 118554.

    Article  CAS  Google Scholar 

  28. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46(1–2), p 1–184.

    Article  CAS  Google Scholar 

  29. P. He, M. Klimenkov, R. Lindau and A. Möslang, Characterization of Precipitates in Nano Structured 14% Cr ODS Alloys for Fusion Application, J. Nucl. Mater., 2012, 428(1–3), p 131–138.

    Article  CAS  Google Scholar 

  30. M.K. Miller, K.F. Russell and D.T. Hoelzer, Characterization of Precipitates in MA/ODS Ferritic Alloys, J. Nucl. Mater., 2006, 351(1–3), p 261–268.

    Article  CAS  Google Scholar 

  31. P. Olier, J. Malaplate, M.H. Mathon, D. Nunes, D. Hamon, L. Toualbi, Y. de Carlan and L. Chaffron, Chemical and Microstructural Evolution on ODS Fe–14CrWTi Steel During Manufacturing Stages, J. Nucl. Mater., 2012, 428(1–3), p 40–46.

    Article  CAS  Google Scholar 

  32. D. Pazos, A. Cintins, V. de Castro, P. Fernández, J. Hoffmann, W.G. Vargas, T. Leguey, J. Purans, A. Anspoks, A. Kuzmin, I. Iturriza and N. Ordás, ODS Ferritic Steels Obtained from Gas Atomized Powders Through the STARS Processing Route: Reactive Synthesis as an Alternative to Mechanical Alloying, Nuclear Mater. Energy, 2018, 17, p 1–8.

    Article  Google Scholar 

  33. N. Ordás, E. Gil, A. Cintins, V. de Castro, T. Leguey, I. Iturriza, J. Purans, A. Anspoks, A. Kuzmin and A. Kalinko, The Role of Yttrium and Titanium During the Development of ODS Ferritic Steels Obtained Through the STARS Route: TEM and XAS Study, J. Nucl. Mater., 2018, 504, p 8–22.

    Article  Google Scholar 

  34. E. Gil, J. Cortés, I. Iturriza and N. Ordás, XPS and SEM Analysis of the Surface of Gas Atomized Powder Precursor of ODS Ferritic Steels Obtained Through the STARS Route, Appl. Surf. Sci., 2018, 427, p 182–191.

    Article  CAS  Google Scholar 

  35. J. Li, S. Wu, P. Ma, Y. Yang, E. Wu, L. Xiong and S. Liu, Microstructure Evolution and Mechanical Properties of ODS FeCrAl Alloys Fabricated by an Internal Oxidation Process, Mater. Sci. Eng. A, 2019, 757, p 42–51.

    Article  CAS  Google Scholar 

  36. J. Lee, Y.C. Kim, S. Lee, N.J. Kim and S. Ahn, Correlation of the Microstructure and Mechanical Properties of Oxide-Dispersion-Strengthened Coppers Fabricated by Internal Oxidation, Metall. and Mater. Trans. A., 2004, 35(2), p 493–502.

    Article  Google Scholar 

  37. D. Zhang, J.T. Darsell, J. Wang, X. Ma, G.J. Grant, I.E. Anderson, J.R. Rieken, D.J. Edwards, W. Setyawan, T.J. Horn and G.R. Odette, No Ball Milling Needed: Alternative ODS Steel Manufacturing with Gas Atomization Reaction Synthesis (GARS) and Friction-Based Processing, J. Nuclear Mater., 2022, 566, p 153768.

    Article  CAS  Google Scholar 

  38. P. Dou, S. Jiang, L. Qiu and A. Kimura, Effects of Contents of Al, Zr and Ti on Oxide Particles in Fe–15Cr–2W–0.35Y2O3 ODS Steels, J. Nuclear Mater., 2020, 531, p 152025.

    Article  CAS  Google Scholar 

  39. S. Xu, Z. Zhou, F. Long, H. Jia, N. Guo, Z. Yao and M.R. Daymond, Combination of Back Stress Strengthening and Orowan Strengthening in Bimodal Structured Fe–9Cr–Al ODS Steel with High Al Addition, Mater. Sci. Eng. A, 2019, 739, p 45–52.

    Article  CAS  Google Scholar 

  40. S. Xu, Z. Zhou, F. Long, H. Jia, N. Guo, Y. Sun, Z. Yao and M.R. Daymond, Influence of Al Addition Strategy on the Microstructure of a Low-Cr Oxide Dispersion-Strengthened Ferritic Steel, Adv. Eng. Mater., 2019, 22(4), p 1900879.

    Article  Google Scholar 

  41. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and F. Abe, TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Steel with Zr Addition, J. Nucl. Mater., 2014, 444(1–3), p 441–453.

    Article  CAS  Google Scholar 

  42. H. Xu, Z. Lu, S. Ukai, N. Oono and C. Liu, Effects of Annealing Temperature on Nanoscale Particles in Oxide Dispersion Strengthened Fe-15Cr Alloy Powders with Ti and Zr Additions, J. Alloys Compd., 2017, 693, p 177–187.

    Article  CAS  Google Scholar 

  43. W. Li, T. Hao, R. Gao, X. Wang, T. Zhang, Q. Fang and C. Liu, The Effect of Zr, Ti Addition on the Particle Size and Microstructure Evolution of yttria Nanoparticle in ODS Steel, Powder Technol., 2017, 319, p 172–182.

    Article  CAS  Google Scholar 

  44. A. Arora and S. Mula, Effect of Ti Addition On Thermal Stability and Phase Evolution of Super-Invar Based Yttria Added ODS Alloys Developed by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2022, 899, p 163336.

    Article  CAS  Google Scholar 

  45. X. Zhou, C. Li, L. Yu, H. Li and Y. Liu, Effects of Ti Addition on Microstructure and Mechanical Property of Spark-Plasma-Sintered Transformable 9Cr-ODS Steels, Fusion Eng. Des., 2018, 135, p 88–94.

    Article  CAS  Google Scholar 

  46. R. Gao, T. Zhang, X.P. Wang, Q.F. Fang and C.S. Liu, Effect of Zirconium Addition on the Microstructure and Mechanical Properties of ODS Ferritic Steels Containing Aluminum, J. Nucl. Mater., 2014, 444(1–3), p 462–468.

    Article  CAS  Google Scholar 

  47. O. Fabrichnaya, H.J. Seifert, R. Weiland, T. Ludwig, F. Aldinger and A. Navrotsky, Phase Equilibria and Thermodynamics in the Y2O3–Al2O3–SiO2 System, Int. J. Mater. Res., 2001, 92(9), p 1083–1097.

    CAS  Google Scholar 

  48. Y. Jiang, J.R. Smith and G. Robert-Odette, Prediction of Structural, Electronic and Elastic Properties of Y2Ti2O7 and Y2TiO5, Acta Mater., 2010, 58(5), p 1536–1543.

    Article  CAS  Google Scholar 

  49. G. Zhang, Z. Zhou, K. Mo, Y. Miao, S. Li, X. Liu, M. Wang, J.-S. Park, J. Almer and J.F. Stubbins, The Comparison of Microstructures and Mechanical Properties Between 14Cr-Al and 14Cr-Ti Ferritic ODS Alloys, Mater. Des., 2016, 98, p 61–67.

    Article  CAS  Google Scholar 

  50. X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang and H. Li, Microstructure Characteristic And Mechanical Property of Transformable 9Cr-ODS Steel Fabricated by spark plasma sintering, Mater. Des., 2017, 132, p 158–169.

    Article  CAS  Google Scholar 

  51. M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident and A. Deschamps, Influence of Microstructural Parameters on the Mechanical Properties of Oxide Dispersion Strengthened Fe-14Cr Steels, Acta Mater., 2017, 127, p 165–177.

    Article  Google Scholar 

  52. J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh and H. Abe, Microstructural Characterization and Strengthening Mechanisms of a 12Cr-ODS Steel, Mater. Sci. Eng. A, 2016, 673, p 624–632.

    Article  CAS  Google Scholar 

  53. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito and T. Narita, Nano-Structure Control in ODS Martensitic Steels by Means of Selecting Titanium and Oxygen Contents, J. Phys. Chem. Solids, 2005, 66(2–4), p 571–575.

    Article  CAS  Google Scholar 

  54. Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18(17), p 2280–2283.

    Article  CAS  Google Scholar 

  55. G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer and T.G. Langdon, Influence of Equal-Channel Angular Pressing on Precipitation in an Al–Zn–Mg–Cu Alloy, Acta Mater., 2009, 57(10), p 3123–3132.

    Article  CAS  Google Scholar 

  56. D.T. Hoelzer, C.P. Massey, S.J. Zinkle, D.C. Crawford and K.A. Terrani, Modern Nanostructured Ferritic Alloys: A Compelling and Viable Choice for Sodium Fast Reactor Fuel Cladding Applications, J. Nuclear Mater., 2020, 529, p 151928.

    Article  CAS  Google Scholar 

  57. K.A. Gamble, T. Barani, D. Pizzocri, J.D. Hales, K.A. Terrani and G. Pastore, An Investigation of FeCrAl Cladding Behavior Under Normal Operating and Loss of Coolant Conditions, J. Nucl. Mater., 2017, 491, p 55–66.

    Article  CAS  Google Scholar 

  58. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang and L.L. Snead, Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors, J. Nucl. Mater., 2015, 467, p 703–716.

    Article  CAS  Google Scholar 

  59. S. Xu, Z. Zhou, H. Jia and Z. Yao, Microstructure Characterization and Mechanical Properties of Al Alloyed 9Cr ODS Steels with Different Al Contents, Steel Res. Int., 2019, 90(7), p 1800594.

    Article  Google Scholar 

  60. V. Mihalache, I. Mercioniu, A. Velea and P. Palade, Effect of the Process Control Agent in the Ball-Milled Powders and SPS-Consolidation Temperature on the Grain Refinement, Density and Vickers Hardness of Fe14Cr ODS Ferritic Alloys, Powder Technol., 2019, 347, p 103–113.

    Article  CAS  Google Scholar 

  61. R. Zhao, H. Jia, S. Cao, Z. Tong and Z. Zhou, Effect of the Addition of Y and Y2O3 on Microstructure and Mechanical Properties of 15Cr-15Ni ODS Steel, Nuclear Mater. Energy, 2022, 31, p 101196.

    Article  CAS  Google Scholar 

  62. E. Oñorbe, M. Hernández-Mayoral, A. Morrison and M. Serrano, Study of the microstructure and small punch behavior of a 9Cr ODS tube, Nuclear Mater. Energy, 2019, 20, p 100698.

    Article  Google Scholar 

  63. Y. Wu, H. Zhao, J. Li, Y. Zhang and T. Liu, Effects of Y4Zr3O12 Addition on the Microstructure and Mechanical Properties of Fe–15Cr–2W-0.35Ti ODS Steels, Mater. Sci. Eng. A, 2021, 804, p 140734.

    Article  CAS  Google Scholar 

  64. Y. Miao, K. Mo, Z. Zhou, X. Liu, K.-C. Lan, G. Zhang, M.K. Miller, K.A. Powers, J. Almer and J.F. Stubbins, In situ Synchrotron Tensile Investigations on the Phase Responses Within an Oxide Dispersion-Strengthened (ODS) 304 Steel, Mater. Sci. Eng. A, 2015, 625, p 146–152.

    Article  CAS  Google Scholar 

  65. Y. Cao, S. Ni, X. Liao, M. Song and Y. Zhu, Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation, Mater. Sci. Eng. R. Rep., 2018, 133, p 1–59.

    Article  Google Scholar 

  66. E. Aydogan, S. Pal, O. Anderoglu, S.A. Maloy, S.C. Vogel, G.R. Odette, J.J. Lewandowski, D.T. Hoelzer, I.E. Anderson and J.R. Rieken, Effect of Tube Processing Methods on the Texture and Grain Boundary Characteristics of 14YWT Nanostructured Ferritic alloys, Mater. Sci. Eng. A, 2016, 661, p 222–232.

    Article  CAS  Google Scholar 

  67. E. Vakhitova, D. Sornin, F. Barcelo and M. François, Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process, J. Nucl. Mater., 2017, 494, p 20–28.

    Article  CAS  Google Scholar 

  68. L. Toualbi, C. Cayron, P. Olier, R. Logé and Y. de Carlan, Relationships Between Mechanical Behavior and Microstructural Evolutions in Fe 9Cr–ODS During the Fabrication Route of SFR Cladding Tubes, J. Nucl. Mater., 2013, 442(1–3), p 410–416.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Iron and Steel Research Institute Co., Ltd. Science and Technology Fund (Grant No. 23T6017Z).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. helped in data curation, investigation, writing—original draft preparation, writing—review and editing, and visualization; H.C. helped in data curation, investigation, funding acquisition, writing—original draft preparation, and writing—review and editing; X.H. helped in data curation, investing, and writing—review and editing; and H.B. worked in investing and writing—review and editing.

Corresponding author

Correspondence to Hongyan Che.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., Che, H., He, X. et al. Microstructure Evolution and Mechanical Properties of a High Cr Oxide Dispersion-Strengthened Steel through STARS Route Followed by Hot Isostatic Pressing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09416-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09416-4

Keywords

Navigation