Skip to main content
Log in

Single-Step Combustion Synthesis of Cerium Aluminate in the Presence of Copper

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cerium aluminate, CeAlO3, was prepared in the presence of copper in a single-step combustion synthesis without the need for post-synthesis calcination. The prepared material was investigated using x-ray diffraction followed by whole powder pattern decomposition, scanning electron microscopy, energy-dispersive x-ray spectroscopy, Fourier-transformed infrared spectroscopy, UV–Vis spectroscopy, x-ray photoelectron spectroscopy and thermogravimetric analysis. It was established that if the amount of copper was at least 1 mol.%, the combustion process was enhanced enough to result in the appearance of CeAlO3 as the dominant phase. If the amount of copper was less than 1 mol.%, CeO2 forms instead of CeAlO3. The share of CeAlO3 increases with the amount of copper, but this effect becomes negligible at 3 mol.%. Samples with CeO2 as the main phase display a sponge-like morphology, while samples with CeAlO3 as the main phase are dendritic. CeAlO3 decomposes to CeO2 and γ-Al2O3 between 600 and 800 °C yielding sample mass gain due to binding of additional oxygen in course of Ce3+-to-Ce4+ oxidation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the data can be obtained directly from the authors.

References

  1. L. Chen and S. Pradhan, Low Temperature Synthesis of Metal Doped Perovskites Catalyst for Hydrogen Production by Autothermal Reforming of Methane, Int. J. Hydrog. Energy, 2016, 41, p 14605–14614. https://doi.org/10.1016/j.ijhydene.2016.06.235

    Article  CAS  Google Scholar 

  2. F. Guo, Q. Li, H. Zhang, X. Yang, Z. Tao, X. Chen, and J. Chen, Czochralski Growth, Magnetic Properties and Faraday Characteristics of CeAlO3 Crystals, Crystals, 2019, 9(245), p 1–11. https://doi.org/10.3390/cryst9050245

    Article  CAS  Google Scholar 

  3. O. Sidletskiy, P. Arhipov, S. Tkachenko, I. Gerasymov, G. Trushkovsky, T. Zorenko, Y. Zorenko, P. Mateichenko, A. Puzan, W. Gieszczyk, and P. Bilski, Luminescent and Scintillation Properties of CeAlO3 Crystals and Phase-Separated CeAlO3/CeAl11O18 Metamaterials, Crystals, 2019, 9(296), p 1–10. https://doi.org/10.3390/cryst9060296

    Article  CAS  Google Scholar 

  4. F. Zanotto, A. Frignani, A. Balbo, V. Grassi, and C. Monticelli, Influence of CeAlO3 Nanoparticles on the Performances of Silane Coatings for AZ31 Alloy, Int. J. Corros. Scale Inhib., 2019, 8, p 954–973. https://doi.org/10.17675/2305-6894-2019-8-4-10

    Article  CAS  Google Scholar 

  5. C. Tian, L. Yuan, T. Wen, E. Jin, D. Jia, and J. Yu, Direct Synthesis of CeAlO3 by Carbon-Bed Method Under High Temperature, Ceram. Int., 2020, 46, p 7871–7878. https://doi.org/10.1016/j.ceramint.2019.12.006

    Article  CAS  Google Scholar 

  6. A. Piras, A. Trovarelli, and G. Dolcetti, Remarkable Stabilization of Transition Alumina Operated by Ceria Under Reducing and redox Conditions, Appl. Catal. B, 2000, 28, p 77–81. https://doi.org/10.1016/S0926-3373(00)00226-5

    Article  Google Scholar 

  7. W.T. Fu and D.J.W. Ijdo, “Unusual” Phase Transitions in CeAlO3, J. Solid State Chem., 2006, 179, p 2732–2738. https://doi.org/10.1016/j.jssc.2006.05.002

    Article  CAS  Google Scholar 

  8. W.H. Zachariasen, Crystal Chemical Studies of the 5f-Series of Elements. XII. New Compounds Representing Known Structure Types, Acta Crystallogr., 1949, 2, p 388–390. https://doi.org/10.1107/S0365110X49001016

    Article  CAS  Google Scholar 

  9. M. Tanaka, T. Shishido, H. Horiuchi, N. Toyota, D. Shindo, and T. Fukuda, Structure Studies of CeAlO3, J. Alloys Comp., 1993, 192, p 87–89. https://doi.org/10.1016/0925-8388(93)90194-R

    Article  CAS  Google Scholar 

  10. W.T. Fu and D.J.W. Ijdo, The Structure of CeAlO3 by Rietveld Refinement of X-ray Powder Difraction Data, J. Solid State Chem., 2004, 177, p 2973–2976. https://doi.org/10.1016/j.jssc.2004.04.056

    Article  CAS  Google Scholar 

  11. S.T. Aruna, N.S. Kini, S. Shetty, and K.S. Rajam, Synthesis of Nanocrystalline CeAlO3 by Solution-Combustion Route, Mat. Chem. Phys., 2010, 119, p 485–489. https://doi.org/10.1016/j.matchemphys.2009.10.001

    Article  CAS  Google Scholar 

  12. A. Feteira, D.C. Sinclair, and M.T. Lanagan, Structural and Electrical Characterization of CeAlO3 Ceramics, J. Appl. Phys., 2007, 101, p 064110. https://doi.org/10.1063/1.2559648

    Article  CAS  Google Scholar 

  13. C. Moure and O. Pena, Recent Advances in Perovskites: Processing and Properties, Prog. Solid State Chem., 2015, 43, p 123–148. https://doi.org/10.1016/j.progsolidstchem.2015.09.001

    Article  CAS  Google Scholar 

  14. S. Pradhan, U.N. Gupta, and S. Chilukuri, Low Temperature Synthesis of CeAlO3 Perovskites, Adv. Porous Mater., 2016, 4, p 73–78. https://doi.org/10.1166/apm.2016.1097

    Article  Google Scholar 

  15. T.R. Araújo, R.L.B.A. Medeiros, A.A.S. Oliveira, R.B.A. Nascimento, F.V. Maziviero, D.M.A. Melo, and M.A.F. Melo, Optical, Morphological, Physical and Crystalline Properties of Type Structures CexAl2-xO3 (x =0; 0.25; 0.50; 0.75 and 1) Obtained by Microwave Assisted Combustion, Mater. Sci. Semicond. Process., 2021, 134, p 106014. https://doi.org/10.1016/j.mssp.2021.106014

    Article  CAS  Google Scholar 

  16. A.S. Prakash, C. Shivakumara, and M.S. Hegde, Single Step Preparation of CeO2/CeAlO3/γ-Al2O3 by Solution Combustion Method: Phase Evolution, Thermal Stability and Surface Modification, Mater. Sci. Eng. B, 2007, 139, p 55–61. https://doi.org/10.1016/j.mseb.2007.01.034

    Article  CAS  Google Scholar 

  17. S.T. Aruna, N.S. Kini, and K.S. Rajam, Solution Combustion Synthesis of CeO2-CeAlO3 Nano-Composites by Mixture-of-Fuels Approach, Mater. Res. Bull., 2009, 44, p 728–733. https://doi.org/10.1016/j.materresbull.2008.09.034

    Article  CAS  Google Scholar 

  18. P.A. Deshpande, S.T. Aruna, and G. Madras, Photocatalytic Activity of Combustion Synthesized Nanocrystalline CeAlO3, Clean: Soil, Air, Water, 2011, 39, p 259–264. https://doi.org/10.1002/clen.201000256

    Article  CAS  Google Scholar 

  19. S.A. Venancio and P.E.V. De Miranda, Synthesis of CeAlO3/CeO2–Al2O3 for use as a solid oxide fuel cell functional anode material, Ceram. Int., 2011, 37, p 3139–3152. https://doi.org/10.1016/j.ceramint.2011.05.054

    Article  CAS  Google Scholar 

  20. W. Wen and J.M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability, RSC Adv., 2014, 4, p 58090–58100. https://doi.org/10.1039/C4RA10145F

    Article  CAS  Google Scholar 

  21. E. Carlos, R. Martins, E. Fortunato, and R. Braquino, Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides, Chem. Eng. J., 2020, 26, p 9099–9125. https://doi.org/10.1002/chem.202000678

    Article  CAS  Google Scholar 

  22. A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan, Solution Combustion Synthesis of Nanoscale Materials, Chem. Rev., 2016, 116, p 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  23. C.A. da Silva, N.F.P. Ribeiro, and M.-M.V.M. Souza, Effect of the Fuel Type on the Synthesis of Yttria Stabilized Zirconia by Combustion Method, Ceram. Int., 2009, 35, p 3441–3446. https://doi.org/10.1016/j.ceramint.2009.06.005

    Article  CAS  Google Scholar 

  24. A. Civera, M. Pavese, G. Saracco, and V. Specchia, Combustion Synthesis of Perovskite-Type Catalysts for Natural Gas Combustion, Catal. Today, 2003, 83, p 199–211. https://doi.org/10.1016/S0920-5861(03)00220-7

    Article  CAS  Google Scholar 

  25. K. Mužina, F. Plešić, V. Mandić, and S. Kurajica, MOXCeO2-Al2O3 catalyst for soot oxidation process, MATRIB 2021—Conference proceedings. D. Ćorić, S. Šolić, F. Ivušić Ed., HDMT, Zagreb, 2021, p 385–397

    Google Scholar 

  26. S. Kurajica, V. Mandić, K. Mužina, I. Panžić, D. Kralj, M. Duplančić, and I.K. Ivković, Thermal Stability and Properties of Pd/CeAlO3 Catalyst Prepared by Combustion Synthesis, J. Therm. Anal. Calorim., 2023 https://doi.org/10.1007/s10973-023-12233-x

    Article  Google Scholar 

  27. V. Mandić, S. Kurajica, K. Mužina, F. Brleković, and I.K. Munda, Tailoring Thermal Development of Gamma Alumina Sorbents Material Using Combustion Synthesis: the Effect of Amino Acids (G, A, N) and Equivalence Ratio, J. Therm. Anal. Calorim., 2020, 142, p 1681–1691. https://doi.org/10.1007/s10973-020-10258-0

    Article  CAS  Google Scholar 

  28. J.L. De la Fuente, Mesoporous Copper Oxide as a New Combustion Catalyst for Composite Propellant, J. Propuls. Power, 2013, 20, p 293–298. https://doi.org/10.2514/1.B34491

    Article  CAS  Google Scholar 

  29. J.Z. Shyu and K. Otto, Characterization of Pt/γ-Alumina Catalyst Containing Ceria, J. Catal., 1989, 115, p 16–23. https://doi.org/10.1016/0021-9517(89)90003-1

    Article  CAS  Google Scholar 

  30. A. Piras, S. Colussi, A. Trovarelli, V. Sergo, J. Llorca, R. Psaro, and L. Sordelli, Structural and Morphological Investigation of Ceria-Promoted Al2O3 Under Severe Reducing/Oxidizing Conditions, J. Phys. Chem. B, 2005, 109, p 11110–11118. https://doi.org/10.1021/jp0440737

    Article  CAS  PubMed  Google Scholar 

  31. W. Chen, G. Zhao, Q. Xue, L. Chen, and Y. Lu, High Carbon-Resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 Reforming, Appl. Catal. B Environ., 2013, 136(137), p 260–268. https://doi.org/10.1016/j.apcatb.2013.01.044

    Article  CAS  Google Scholar 

  32. H.H. Cheng, S.S. Chen, L.W. Jang, and H.M. Liu, Glycine-Nitrate Combustion Synthesis and Photocatalytic Degradation of Cu-Based Nanoparticles, Catalysts, 2020, 10, p 1061. https://doi.org/10.3390/catal10091061

    Article  CAS  Google Scholar 

  33. A. Coelho, Whole Profile Structure Solution from Powder Diffraction Data Using Simulated Annealing, J. Appl. Cryst., 2000, 33, p 899–908. https://doi.org/10.1107/S002188980000248X

    Article  CAS  Google Scholar 

  34. A. Coelho, TOPAS V5: General Profile and Structure Analysis Software for Powder Diffraction Data (version 5.0), Karlsruhe, Germany, 2012.

    Google Scholar 

  35. J. Chandradass, M. Balasubramanian, D. Bae, and K.H. Kim, Effect of Different Fuels on the Alumina–Ceria Composite Powders Synthesized by Sol–Gel Auto Combustion Method, J. Alloys Compd., 2009, 479, p 363–367. https://doi.org/10.1016/j.jallcom.2008.12.119

    Article  CAS  Google Scholar 

  36. E.M. Köck, M. Kogler, T. Bielz, B. Klötzer, and S. Penner, In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2, J. Phys. Chem. C, 2013, 117, p 17666–17673. https://doi.org/10.1021/jp405625x

    Article  CAS  Google Scholar 

  37. T. Mokkelbost, I. Kaus, T. Grande, and M.A. Einarsrud, Combustion Synthesis and Characterization of Nanocrystalline CeO2-Based Powders, Chem. Mater., 2004, 16, p 5489–5494. https://doi.org/10.1021/cm048583p

    Article  CAS  Google Scholar 

  38. O.V. Komova, S.A. Mukha, A.M. Ozerova, G.V. Odegova, V.I. Simagina, O.A. Bulavchenko, A.V. Ishchenko, and O.V. Netskina, The Formation of Perovskite During the Combustion of an Energy-Rich Glycine–Nitrate Precursor, Materials, 2020, 13, p 5091. https://doi.org/10.3390/ma13225091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S.E. Collins, M.A. Baltanás, and A.L. Bonivardi, Infrared Spectroscopic Study of the Carbon Dioxide Adsorption on the Surface of Ga2O3 Polymorphs, J. Phys. Chem. B, 2006, 110, p 5498–5507. https://doi.org/10.1021/jp055594c

    Article  CAS  PubMed  Google Scholar 

  40. J. Szanyi and J.H. Kwak, Dissecting the Steps of CO2 Reduction: 1. The Interaction of CO and CO2 with γ-Al2O3: and In Situ FTIR Study, Phys. Chem. Chem. Phys., 2014, 16, p 15117–15125. https://doi.org/10.1039/c4cp00616j

    Article  CAS  PubMed  Google Scholar 

  41. K. Coenen, F. Galluci, B. Mezari, E. Hensen, and M. Van Sint Annaland, An In-Situ IR Study on the Adsorption of CO2 and H2O on Hydrotalcites, J. CO2 Util., 2018, 24, p 228–239. https://doi.org/10.1016/j.jcou.2018.01.008

    Article  CAS  Google Scholar 

  42. https://webbook.nist.gov/cgi/inchi?ID=C7732185&Type=IR-SPEC&Index=0 (Access: January 29th, 2024)

  43. M.A. Małecka and L. Kępiński, Ce0.4IIICe0.6IVAlO3.3—an unexpected product of a solid state reaction in the CeO2–Al2O3 system, CrystEngComm, 2015, 17, p 8282. https://doi.org/10.1039/c5ce01549a

    Article  Google Scholar 

  44. N. Kaufherr, L. Mendelovici, and M. Steinberg, The Preparation of Cerium(III) Aluminate at Lower Temperatures: IR, X-ray and Electron Spin Resonance Study, J. Less-Common Met., 1985, 107, p 281–289. https://doi.org/10.1016/0022-5088(85)90087-6

    Article  CAS  Google Scholar 

  45. V. Vasylkovskyi, I. Bespalova, O. Gryshkov, M. Slipchenko, S. Tkachenko, P. Arhipov, I. Gerasymov, Y. Zholudov, Z. Zhao, A. Feldhoff, A. Sorokin, O. Slipchenko, B. Grynyov, and B. Chichkov, Laser Generation of CeAlO3 Nanocrystals with Perovskite Structure, Appl. Phys. A, 2023, 129, p 714. https://doi.org/10.1007/s00339-023-06977-4

    Article  CAS  Google Scholar 

  46. L.J. Yin, G.Z. Chen, C. Wang, X. Xu, L.Y. Hao, and H.T. Hintzen, Tunable Luminescence of CeAl11O18 Based Phosphors by Replacement of (AlO)+ by (SiN)+ and Co-doping with Eu, ECS J. Solid State Sci. Technol., 2014, 3, p 131–138. https://doi.org/10.1149/2.0191407jss

    Article  CAS  Google Scholar 

  47. C.A. da Silva and P.E.V. De Miranda, Synthesis of LaAlO3 Based Materials for Potential Use as Methane-Fueled Solid Oxide Fuel Cell Anodes, Int. J. Hydrog. Energy, 2015, 40, p 10002–10015. https://doi.org/10.1016/j.ijhydene.2015.06.019

    Article  CAS  Google Scholar 

  48. Z. Hajduchova, L. Pach, and J. Lokaj, Adsorption of Dodecylbenzenesulfonic acid on the Alumina Particles in the Preparation of Alumina Foam, Ceram.-Silik., 2018, 62, p 138–145. https://doi.org/10.13168/cs.2018.0005

    Article  Google Scholar 

  49. R.T. Kumar, P. Suresh, N.C.S. Selvam, L.J. Kennedy, and J.J. Vijaya, Comparative Study of Nano Copper Aluminate Spinel Prepared by Sol–Gel and Modified Sol–Gel Techniques: Structural, Electrical, Optical and Catalytic Studies, J. Alloys Compd., 2012, 522, p 39–45. https://doi.org/10.1016/j.jallcom.2012.01.064

    Article  CAS  Google Scholar 

  50. V.S. Kirankumar and S. Sumathi, Catalytic Activity of Bismuth Doped Zinc Aluminate Nanoparticles Towards Environmental Remediation, Mat. Res. Bull., 2017, 93, p 74–82. https://doi.org/10.1016/j.materresbull.2017.04.022

    Article  CAS  Google Scholar 

  51. S. Damyanova, C.A. Perez, M. Schmal, and J.M.C. Bueno, Characterization of Ceria-Coated Alumina Carrier, Appl. Catal. A, 2002, 234, p 271–282. https://doi.org/10.1016/S0926-860X(02)00233-8

    Article  CAS  Google Scholar 

  52. X. Wang, H. Yamada, K. Nishikubo, and C.N. Xu, Synthesis and Electric Property of CeAlO3 Ceramics, Jpn. J. Appl. Phys., 2005, 44, p 961–963. https://doi.org/10.1143/JJAP.44.961

    Article  CAS  Google Scholar 

  53. P. Arhipov, S. Tkachenko, I. Gerasymov, O. Sidletskiy, K. Hubenko, S. Vasyukov, N. Shiran, V. Baumer, P. Mateychenko, A. Fedorchenko, Y. Zorenko, Y. Zhydachevskii, K. Lebbou, and M. Korjik, Growth and Characterization of Large CeAlO3 Perovskite Crystals, J. Cryst. Growth, 2015, 430, p 116–121. https://doi.org/10.1016/j.jcrysgro.2015.08.025

    Article  CAS  Google Scholar 

  54. S. Zhang, L. Lv, L. Jiang, H. Li, D. Li, J. Feng, Y. Luo, R. Pang, C. Li, and H. Zhang, Origin of Color Centers in the Perovskite Oxide CeAlO3, ChemPlusChem, 2018, 83, p 976–983. https://doi.org/10.1002/cplu.201800400

    Article  CAS  PubMed  Google Scholar 

  55. P. Venkataswamy, K.N. Rao, D. Jampaiah, and B.M. Reddy, Nanostructured Manganese Doped Ceria Solid Solutions for CO Oxidation at Lower Temperatures, Appl. Catal. B, 2015, 162, p 122–132. https://doi.org/10.1016/j.apcatb.2014.06.038

    Article  CAS  Google Scholar 

  56. E. Moretti, M. Lenarda, P. Riello, L. Storaro, A. Talon, R. Frattini, A. Reyes-Carmona, A. Jiménez-López, and E. Rodríguez-Castellón, Influence of Synthesis Parameters on the Performance of CeO2–CuO and CeO2–ZrO2–CuO Systems in the Catalytic Oxidation of CO in Excess of Hydrogen, Appl. Catal. B, 2013, 129, p 556–565. https://doi.org/10.1016/j.apcatb.2012.10.009

    Article  CAS  Google Scholar 

  57. Z. Ren, F. Peng, J. Li, X. Liang, and B. Chen, Morphology-Dependent Properties of Cu/CeO2 Catalysts for the Water-Gas Shift Reaction, Catalysts, 2017, 7(48), p 1–12. https://doi.org/10.3390/catal7020048

    Article  CAS  Google Scholar 

  58. S. Chidaraboyina, A.S. Nesaraji, and M. Arunkumar, Aluminium Doped Cerium Oxide as an Efficient Nanophotocatalyst for the Elimination of Rhodamine B Dye Present in Water, Asian J. Chem., 2023, 35(4), p 882–886. https://doi.org/10.14233/ajchem.2023.27574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The aegis of the University of Zagreb is gratefully acknowledged. The help of Antonela Čugalj and Katarina Marija Drmić with the synthesis of the analyzed samples is much appreciated.

Funding

This work has been fully supported by the Croatian Science Foundation under the project IP-01-2018-2963.

Author information

Authors and Affiliations

Authors

Contributions

SK did conceptualization, methodology, formal analysis and investigation, writing—original draft preparation, visualization, supervision, project administration and funding acquisition; KM done conceptualization, methodology, formal analysis and investigation, writing—review and editing, visualization; LB contributed to formal analysis and investigation, writing—review and editing and visualization; FB was involved in formal analysis and investigation, writing—review and editing and visualization. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Katarina Mužina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurajica, S., Mužina, K., Bauer, L. et al. Single-Step Combustion Synthesis of Cerium Aluminate in the Presence of Copper. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09384-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09384-9

Keywords

Navigation