Skip to main content
Log in

Extremal Black Holes as Relativistic Systems with Kepler Dynamics

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The recent detection of gravitational waves emanating from inspiralling black hole binaries has triggered a renewed interest in the dynamics of relativistic two-body systems. The conservative part of the latter are given by Hamiltonian systems obtained from so-called post-Newtonian expansions of the general relativistic description of black hole binaries. In this paper we study the general question of whether there exist relativistic binaries that display Kepler-like dynamics with elliptical orbits. We show that an orbital equivalence to the Kepler problem indeed exists for relativistic systems with a Hamiltonian of a Kepler-like form. This form is realised by extremal black holes with electric charge and scalar hair to at least first order in the post-Newtonian expansion for arbitrary mass ratios and to all orders in the post-Newtonian expansion in the test-mass limit of the binary. Moreover, to fifth post-Newtonian order, we show that Hamiltonians of the Kepler-like form can be related explicitly through a canonical transformation and time reparametrisation to the Kepler problem, and that all Hamiltonians conserving a Laplace – Runge – Lenz-like vector are related in this way to Kepler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The post-Newtonian expansion is in terms of \(\frac{1}{c^{2}}\), resulting in an expansion in weak gravitational field and low velocity, while the post-Minkowskian is an expansion in gravitational constant \(G\), i. e., a weak gravitational field expansion only [18].

  2. For all bodies orbiting the Sun, the square of the period is proportional to the third power of the semi-major axis of the orbit, with the same proportionality constant [18].

  3. This is a rather interesting technical problem in itself, and we refer the interested reader to [7, 16] for the current state of the art.

  4. We divide out the rest-mass energy \(mc^{2}\) and set \(m=1\) as previously.

  5. This scalar field gives the black hole what is called secondary hair, as the scalar charge is completely determined in terms of mass and charge within a given theory, i. e., for a given value of the scalar coupling constant [24].

  6. Note that this in general will also have an additional \(p_{r}^{2}/r\) term, proportional to the radial momentum only. By means of a constant shift of the radial coordinate, one can set the coefficient of this term to zero, see, e. g., [9]. We will do so in order to facilitate the comparison to Section 2.

  7. This corresponds to the combination \(A+2B+C+D\) in the conventions of [11, 37].

  8. This is because the effective Newton’s constant \(G_{12}\) is eight times larger than the usual gravitational constant. This corresponds to the findings of [11], who also found this in their super-gravity system.

  9. This result has been derived before in [31], though with a different mass function in the sense of Section 3.3, such that the results only coincide for extremal black holes.

  10. This value coincides with the Kaluza – Klein reduction of gravity in \(5\) dimensions [15].

  11. One could further extend our considerations and include magnetic charges as well. We expect the dyonic charges to span a \(U(1)\) charge vector playing a completely analogous role to the \(SU(8)\) charge vector of [8].

  12. In terms of the Schwarzschild radial coordinate, this choice of gauge corresponds to \(A_{0}=-\frac{1}{\sqrt{1+a^{2}}}+\frac{m_{2}Q_{2}}{r}\). After the change \(r\to r+r_{\pm}\), we find the above.

REFERENCES

  1. Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 2016, vol. 116, no. 6, 061102, 16 pp.

    Article  MathSciNet  Google Scholar 

  2. Abbott, R. et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run, Phys. Rev. X, 2023, vol. 13, no. 4, 041039, 89 pp.

    Google Scholar 

  3. Abbott, B. P. et al., Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativ., 2020, vol. 23, Art. 3, 69 pp.

    Article  Google Scholar 

  4. Alvarez-Jimenez, J., Cortese, I., García, J. A., Gutíerrez-Ruiz, D. and Vergara, J. D., Relativistic Runge – Lenz Vector: From \(\mathcal{N}=4\) SYM to \(\rm SO(4)\) Scalar Field Theory, J. High Energy Phys., 2018, vol. 2018, no. 10, Art. 153, 16 pp. (+ front matter).

    Article  MathSciNet  Google Scholar 

  5. Bacry, H., Ruegg, H., and Souriau, J.-M., Dynamical Groups and Spherical Potentials in Classical Mechanics, Comm. Math. Phys., 1966, vol. 3, no. 5, pp. 323–333.

    Article  MathSciNet  Google Scholar 

  6. Balakin, A., van Holten, J.W., and Kerner, R., Motions and Worldline Deviations in Einstein – Maxwell Theory, Classical Quant. Grav., 2000, vol. 17, no. 24, pp. 5009–5023.

    Article  MathSciNet  Google Scholar 

  7. Berger, Th. and Haller, F., On an Extension of a Global Implicit Function Theorem, C. R. Math. Acad. Sci. Paris, 2022, vol. 360, 439–450.

    Article  MathSciNet  Google Scholar 

  8. Bertotti, B., Iess, L., and Tortora, P., A Test of General Relativity Using Radio Links with the Cassini Spacecraft, Nature, 2003, vol. 425, pp. 374–376.

  9. Bjerrum-Bohr, N. E. J., Donoghue, J. F., and Holstein, B. R., Erratum: Quantum Gravitational Corrections to the Nonrelativistic Scattering Potential of Two Masses [Phys. Rev. D, 2003, vol. 67, no. 8, 084033, 12 pp.], Phys. Rev. D, 2005, vol. 71, no. 6, 069903, 1 p.

    Article  Google Scholar 

  10. Caron-Huot, S. and Henn, J. M., Solvable Relativistic Hydrogenlike System in Supersymmetric Yang – Mills Theory, Phys. Rev. Lett., 2014, vol. 113, no. 16, 161601, 5 pp.

    Article  Google Scholar 

  11. Caron-Huot, S. and Zahraee, Z., Integrability of Black Hole Orbits in Maximal Supergravity, J. High Energy Phys., 2019, vol. 2019, no. 7, Art. 179, 42 pp.

    Article  MathSciNet  Google Scholar 

  12. Chanda, S., Gibbons, G.W., and Guha, P., Jacobi – Maupertuis – Eisenhart Metric and Geodesic Flows, J. Math. Phys., 2017, vol. 58, no. 3, 032503, 16 pp.

    Article  MathSciNet  Google Scholar 

  13. Chruściel, P. T., Costa, J. L., and Heusler, M., Stationary Black Holes: Uniqueness and Beyond, Living Rev. Relativ., 2012, vol. 15, no. 1, Art. 7.

    Article  Google Scholar 

  14. Coleman, S., Preskill, J., and Wilczek, F., Quantum Hair on Black Holes, Nuclear Phys. B, 1992, vol. 378, nos. 1–2, pp. 175–246.

    Article  MathSciNet  Google Scholar 

  15. Cornish, N. J. and Gibbons, G.W., A Tale of Two Centres, Classical Quant. Grav., 1997, vol. 14, no. 7, pp. 1865–1881.

    Article  MathSciNet  Google Scholar 

  16. Cristea, M., On Global Implicit Function Theorem, J. Math. Anal. Appl., 2017, vol. 456, no. 2, pp. 1290–1302.

    Article  MathSciNet  Google Scholar 

  17. Cushman, R. H. and Bates, L. M., Global Aspects of Classical Integrable Systems, 2nd ed., Basel:Birkhäuser/Springer, 2015.

    Book  Google Scholar 

  18. Damour, Th., Gravitational Scattering, Post-Minkowskian Approximation, and Effective-One-Body Theory, Phys. Rev. D, 2016, vol. 94, no. 10, 104015, 12 pp.

    Article  MathSciNet  Google Scholar 

  19. Datta Majumdar, S., A Class of Exact Solutions of Einstein’s Field Equations, Phys. Rev. (2), 1947, vol. 72, no. 5, pp. 390–398.

    Article  MathSciNet  Google Scholar 

  20. de Neeling, D., Roest, D., Seri, M., and Waalkens, H., Extremal Black Holes As Relativistic Systems with Kepler Dynamics: Support Code, https://zenodo.org/records/7763831 (v. 1, Mar 23, 2023).

  21. Einstein, A., Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie, in Albert Einstein: Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der Wissenschaften 1914–1932, D. Simon (Ed.), New York: Wiley-VCH, 2005, pp. 78–87.

    Google Scholar 

  22. Flanagan, É. É., The Conformal Frame Freedom in Theories of Gravitation, Reply to Comment: “On the Viability of the Palatini Form of \(1/R\) Gravity” by D. N. Vollick [Classical Quant. Grav., 2004, vol. 21, no. 15, pp. 3813–3816], Classical Quant. Grav., 2004, vol. 21, no. 15, pp. 3817–3829.

    Article  Google Scholar 

  23. Fock, V., Zur Theorie des Wasserstoffatoms, Z. Phys., 1935, vol. 98, nos. 3–4, pp. 145–154.

    Article  Google Scholar 

  24. Garfinkle, D., Horowitz, G. T., and Strominger, A., Charged Black Holes in String Theory, Phys. Rev. D (3), 1991, vol. 43, no. 10, pp. 3140–3143.

    Article  MathSciNet  Google Scholar 

  25. Gibbons, G. W. and Maeda, K., Black Holes and Membranes in Higher-Dimensional Theories with Dilaton Fields, Nuclear Phys. B, 1988, vol. 298, no. 4, pp. 741–775.

    Article  MathSciNet  Google Scholar 

  26. Goldstein, H., Poole, Ch. P., Jr., and Safko, J. L., Classical Mechanics, 3rd ed., Reading, Mass.: Addison-Wesley, 2001.

    Google Scholar 

  27. Hiida, K. and Okamura, H., Gauge Transformation and Gravitational Potentials, Prog. Theor. Phys., 1972, vol. 47, no. 5, pp. 1743–1757.

    Article  Google Scholar 

  28. Holzhey, Ch. F. E. and Wilczek, F., Black Holes As Elementary Particles, Nuclear Phys. B, 1992, vol. 380, no. 3, pp. 447–477.

    Article  MathSciNet  Google Scholar 

  29. Isoyama, S., Sturani, R., and Nakano, H., Post-Newtonian Templates for Gravitational Waves from Compact Binary Inspirals, in Handbook of Gravitational Wave Astronomy, C. Bambi, S. Katsanevas, K. D. Kokkotas (Eds.), Singapore: Springer, 2021, pp. 1–49.

    Google Scholar 

  30. Julié, F.-L., On the Motion of Hairy Black Holes in Einstein – Maxwell-Dilaton Theories, J. Cosmol. Astropart. Phys., 2018, vol. 2018, no. 1, Art. 026, 20 pp. (+ front matter).

    Article  MathSciNet  Google Scholar 

  31. Kan, N. and Shiraishi, K., Interparticle Potential up to Next-to-Leading Order for Gravitational, Electrical, and Dilatonic Forces, Gen. Relativ. Gravit., 2012, vol. 44, no. 4, pp. 887–903.

    Article  MathSciNet  Google Scholar 

  32. Kepler, J., Mem. Am. Philos. Soc., vol. 209, The Harmony of the World, Philadelphia, Penn.: Am. Philos. Soc., 1997.

    Google Scholar 

  33. Khalil, M., Sennett, N., Steinhoff, J., Vines, J., and Buonanno, A., Hairy Binary Black Holes in Einstein – Maxwell-Dilaton Theory and Their Effective-One-Body Description, Phys. Rev. D, 2018, vol. 98, no. 10, 104010, 38 pp.

    Article  MathSciNet  Google Scholar 

  34. Ligon, T. and Schaaf, M., On the Global Symmetry of the Classical Kepler Problem, Rep. Math. Phys., 1976, vol. 9, no. 3, pp. 281–300.

    Article  MathSciNet  Google Scholar 

  35. Luna, A., Monteiro, R., Nicholson, I., Ochirov, A., O’Connell, D., Westerberg, N., and White, Ch. D., Perturbative Spacetimes from Yang – Mills Theory, J. High Energy Phys., 2017, vol. 2017, no. 4, Art. 069, 25 pp. (+ front matter).

    Article  MathSciNet  Google Scholar 

  36. Marsden, J. E. and West, M., Discrete Mechanics and Variational Integrators, Acta Numer., 2001, vol. 10, pp. 357–514.

    Article  MathSciNet  Google Scholar 

  37. Nabet, B. M. and Kol, K., Leading Anomalies, the Drift Hamiltonian and the Relativistic Two-Body System, https://arxiv.org/abs/1408.2628 (2014).

  38. Ortín, T., Gravity and Strings, Cambridge: Cambridge Univ. Press, 2004.

    Book  Google Scholar 

  39. Papapetrou, A., A Static Solution of the Equations of the Gravitational Field for an Arbitary Charge-Distribution, Proc. R. Ir. Acad., A Math. Phys. Sci., 1945–1948, vol. 51, pp. 191–204.

    Google Scholar 

  40. Parra-Martinez, J., Ruf, M. S., and Zeng, M., Extremal Black Hole Scattering at \(\mathcal{O}(G^{3})\): Graviton Dominance, Eikonal Exponentiation, and Differential Equations, J. High Energy Phys., 2020, vol. 2020, no. 11, Art. 023, 65 pp.

    Article  MathSciNet  Google Scholar 

  41. Pau, A.-S. et al., Laser Interferometer Space Antenna, https://arxiv.org/abs/1702.00786 (2017).

  42. Pau, A.-S. et al., Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Relativ., 2023, vol. 26, Art. 2, 326 pp.

    Article  Google Scholar 

  43. Perlick, V., Bertrand Spacetimes, Classical Quant. Grav., 1992, vol. 9, no. 4, pp. 1009–1021.

    Article  MathSciNet  Google Scholar 

  44. Tanay, S., Stein, L. C., and Gálvez Ghersi, J. T., Integrability of Eccentric, Spinning Black Hole Binaries up to Second Post-Newtonian Order, Phys. Rev. D, 2021, vol. 103, no. 6, 064066, 14 pp.

    Article  MathSciNet  Google Scholar 

  45. Tong, D., Lectures on General Relativity, University of Cambridge, https://www.damtp.cam.ac.uk/user/tong/gr.html (2019).

  46. Tsiganov, A. V., The Maupertuis Principle and Canonical Transformations of the Extended Phase Space, J. Nonlinear Math. Phys., 2001, vol. 8, no. 1, pp. 157–182.

    Article  MathSciNet  Google Scholar 

  47. van der Meer, J. C., The Kepler System As a Reduced 4D Harmonic Oscillator, J. Geom. Phys., 2015, vol. 92, pp. 181–193.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Andreas Knauf, Tomás Ortín and Cédric Deffayet for stimulating discussions and to the anonymous referees for their useful comments.

Funding

D.N. is supported by the Fundamentals of the Universe research program within the University of Groningen. M.S. is supported by the NWO project 613.009.10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dijs de Neeling, Diederik Roest, Marcello Seri or Holger Waalkens.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

37J06, 70H15, 83C22, 83C57

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neeling, D.d., Roest, D., Seri, M. et al. Extremal Black Holes as Relativistic Systems with Kepler Dynamics. Regul. Chaot. Dyn. 29, 344–368 (2024). https://doi.org/10.1134/S1560354724020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354724020035

Keywords

Navigation