Skip to main content
Log in

Smearing of primordial gravitational waves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A mechanism for smearing of the primordial gravitational waves during the radiation-dominated phase of the evolution of the Universe is considered. It is shown that the primordial gravitational waves can possess hyperbolicity features due to their propagation through the matter inhomogeneities. This mechanism of smearing can lead to the flattening of the original gravitational wave spectrum and hence has to be taken into account at the interpretation of the properties of primordial gravitational background on the detection of which are oriented ongoing and forthcoming experimental facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.A. Starobinsky, JETP Lett. 30, 682 (1979)

    ADS  Google Scholar 

  2. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  3. M. Kamionkowski, E.D. Kovetz, Ann. Rev. Astron. Astrophys. 54, 227 (2016)

    Article  ADS  Google Scholar 

  4. K. Kohri, T. Terada, Phys. Rev. D 97, 123532 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Wang, T. Terada, K. Kohri, Phys. Rev. D 99, 103531 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Balaji, G. Domenech, J. Silk, JCAP 09, 016 (2022)

    Article  ADS  Google Scholar 

  7. Z. Chang, X. Zhang, J.-Z. Zhou, Phys. Rev. D 107, 063510 (2023)

    Article  ADS  Google Scholar 

  8. Y. Yu, S. Wang, arXiv:2303.03897

  9. A. Ricciardone, J. Phys. Conf. Ser. 840, 012030 (2017)

    Article  Google Scholar 

  10. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, 2005)

    Book  Google Scholar 

  11. D.E. Holz, R.M. Wald, Phys. Rev. D 58, 063501 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Caprini, D.G. Figueroa, Class. Quantum Grav. 35, 163001 (2018)

    Article  ADS  Google Scholar 

  13. D.V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature. Commun. Steklov Math. Inst. 90, 1 (1967)

    MathSciNet  Google Scholar 

  14. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1989)

    Book  Google Scholar 

  15. V.G. Gurzadyan, P. De Bernardis et al., Mod. Phys. Lett. A 20, 813 (2005)

    Article  ADS  Google Scholar 

  16. V.G. Gurzadyan, A. Kocharyan, Eur. Phys. Lett. 86, 29002 (2009)

    Article  ADS  Google Scholar 

  17. V.G. Gurzadyan, A. Kocharyan, A & A 493, L61 (2009)

    Article  ADS  Google Scholar 

  18. V.G. Gurzadyan et al., A & A 566, A135 (2014)

    Article  ADS  Google Scholar 

  19. M. Samsonyan et al., Eur. Phys. J. Plus 135, 946 (2020)

    Article  Google Scholar 

  20. M. Samsonyan et al., Eur. Phys. J. Plus 136, 350 (2021)

    Article  Google Scholar 

  21. M. Samsonyan et al., Eur. Phys. J. Plus 136, 821 (2021)

    Article  Google Scholar 

  22. S. Capozziello, M. Benetti, A.D. Spallicci, Found. Phys. 50, 893 (2020)

    Article  ADS  Google Scholar 

  23. V.G. Gurzadyan, A. Stepanian, A & A 653, A145 (2021)

    Article  ADS  Google Scholar 

  24. E. Di Valentino, O. Mena, S. Pan et al., Class. Quant. Grav. 38, 153001 (2021)

    Article  ADS  Google Scholar 

  25. J. Hu, F. Wang, Universe 9, 94 (2023)

    Article  ADS  Google Scholar 

  26. A. G. Riess, et al., arXiv:2307.15806

  27. Z. Arzoumanian et al., ApJL 905, L34 (2020)

    Article  ADS  Google Scholar 

  28. G. Agazie et al., NANOGrav Collaboration. ApJL 951, L9 (2023)

  29. E. Cannizzaro, G. Franciolini, P. Pani, arXiv:2307.11665

  30. A.F. Zakharov, A.A. Nucita, F. De Paolis, G. Ingrosso, Phys. Rev. D 74, 107101 (2006)

    Article  ADS  Google Scholar 

  31. S. Kopeikin (ed.), Frontiers in Relativistic Celestial Mechanics (de Gruyter, 2014)

    Google Scholar 

  32. I. Ciufolini et al., Eur. Phys. J. C 76, 120 (2016)

    Article  ADS  Google Scholar 

  33. I. Ciufolini et al., Eur. Phys. J. C 79, 872 (2019)

    Article  ADS  Google Scholar 

  34. A.N. Kolmogorov, Dokl. Russian Acad. Sci. 119, 861 (1958)

    Google Scholar 

  35. M. Pollicott, Journ. Stat. Phys. 67, 667 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for valuable comments. M.S. is acknowledging the ANSEF grant 23AN:PS-astroth-2922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gurzadyan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonyan, M., Kocharyan, A.A. & Gurzadyan, V.G. Smearing of primordial gravitational waves. Eur. Phys. J. Plus 139, 317 (2024). https://doi.org/10.1140/epjp/s13360-024-05097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05097-z

Navigation