Skip to main content
Log in

Electromagnetically induced acoustic transparency using a superconducting transmon circuit

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We theoretically investigate the electromagnetically induced acoustic transparency in a four-level tripod (\(\pitchfork\))-type superconducting transmon circuit with three electromagnetic beams: a weak microwave signal beam, a surface acoustic wave (SAW) probe beam, and a strong microwave control beam, due to which the SAW probe beam becomes transparent through the circuit. We show the transmission and reflection of a SAW probe beam using the semi-classical method in a steady-state regime. In particular, we notice a coherent gain in our system, which enhances the SAW’s transmission as it passes through the transmon circuit while substantially lowering the group velocity. We also investigate the electromagnetically induced acoustic transparency in a Doppler broadening regime and demonstrate that Doppler broadening has a considerable influence on the electromagnetically induced acoustic transparency. Our scheme may be useful in superconducting devices that have direct applications in quantum memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001). https://doi.org/10.1103/RevModPhys.73.357

    Article  ADS  Google Scholar 

  2. C. Monroe, Nature 416, 238 (2002). https://doi.org/10.1038/416238a

    Article  ADS  Google Scholar 

  3. H.J. Kimble, Nature 453, 1023 (2008). https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  4. K. Hammerer, A.S. Sørensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010). https://doi.org/10.1103/RevModPhys.82.1041

    Article  ADS  Google Scholar 

  5. D. Awschalom, K.K. Berggren, H. Bernien, S. Bhave, L.D. Carr, P. Davids, S.E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M.V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P.G. Kwiat, M. Lončar, M.D. Lukin, D.A. Miller, C. Monroe, S.W. Nam, P. Narang, J.S. Orcutt, M.G. Raymer, A.H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A.M. Weiner, Z. Zhang, PRX Quantum 2, 017002 (2021). https://doi.org/10.1103/PRXQuantum.2.017002

    Article  Google Scholar 

  6. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005). https://doi.org/10.1103/RevModPhys.77.633

    Article  ADS  Google Scholar 

  7. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999). https://doi.org/10.1038/17561

    Article  ADS  Google Scholar 

  8. G. Buser, R. Mottola, B. Cotting, J. Wolters, P. Treutlein, PRX Quantum 3, 020349 (2022). https://doi.org/10.1103/PRXQuantum.3.020349

    Article  ADS  Google Scholar 

  9. K. Gosar, V.P. Jevšenak, T. Mežnaršič, S. Beguš, T. Krehlik, Dcv Ponikvar, E. Zupanič, P. Jeglič, Phys. Rev. A 108, 032618 (2023). https://doi.org/10.1103/PhysRevA.108.032618

    Article  ADS  Google Scholar 

  10. Z. Zhou, R. Zhu, Y. Sternfeld, J. Scheuer, J. Bonacum, S.M. Shahriar, Opt. Express 31, 14377 (2023). https://doi.org/10.1364/OE.486083

    Article  ADS  Google Scholar 

  11. C.-Y. Cheng, Z.-Y. Liu, P.-S. Hu, T.-N. Wang, C.-Y. Chien, J.-K. Lin, J.-Y. Juo, J.-S. Shiu, I.A. Yu, Y.-C. Chen, Y.-F. Chen, Opt. Lett. 46, 681 (2021). https://doi.org/10.1364/OL.414263

    Article  ADS  Google Scholar 

  12. H.R. Hamedi, V. Yannopapas, E. Paspalakis, J. Ruseckas, Results Phys. 54, 107135 (2023). https://doi.org/10.1016/j.rinp.2023.107135

    Article  Google Scholar 

  13. A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Rev. Mod. Phys. 93, 025005 (2021). https://doi.org/10.1103/RevModPhys.93.025005

    Article  ADS  Google Scholar 

  14. A. Frisk Kockum, in International Symposium on Mathematics, Quantum Theory, and Cryptography, edited by T. Takagi, M. Wakayama, K. Tanaka, N. Kunihiro, K. Kimoto, Y. Ikematsu (Springer Singapore, Singapore, 2021) pp. 125–146

  15. J.Q. You, F. Nori, Nature 474, 589 (2011). https://doi.org/10.1038/nature10122

    Article  ADS  Google Scholar 

  16. W.R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T.A. Ohki, J.S. Kline, D.P. Pappas, Phys. Rev. Lett. 104, 163601 (2010). https://doi.org/10.1103/PhysRevLett.104.163601

    Article  ADS  Google Scholar 

  17. M.A. Sillanpää, J. Li, K. Cicak, F. Altomare, J.I. Park, R.W. Simmonds, G.S. Paraoanu, P.J. Hakonen, Phys. Rev. Lett. 103, 193601 (2009). https://doi.org/10.1103/PhysRevLett.103.193601

    Article  ADS  Google Scholar 

  18. S. Novikov, J.E. Robinson, Z.K. Keane, B. Suri, F.C. Wellstood, B.S. Palmer, Phys. Rev. B 88, 060503 (2013). https://doi.org/10.1103/PhysRevB.88.060503

    Article  ADS  Google Scholar 

  19. A.A. Abdumalikov, O. Astafiev, A.M. Zagoskin, Y.A. Pashkin, Y. Nakamura, J.S. Tsai, Phys. Rev. Lett. 104, 193601 (2010). https://doi.org/10.1103/PhysRevLett.104.193601

    Article  ADS  Google Scholar 

  20. H. Ian, Y.-X. Liu, F. Nori, Phys. Rev. A 81, 063823 (2010). https://doi.org/10.1103/PhysRevA.81.063823

    Article  ADS  Google Scholar 

  21. J. Clarke, F.K. Wilhelm, Nature 453, 1031 (2008). https://doi.org/10.1038/nature07128

    Article  ADS  Google Scholar 

  22. M. Mirhosseini, A. Sipahigil, M. Kalaee, O. Painter, Nature 588, 599 (2020). https://doi.org/10.1038/s41586-020-3038-6

    Article  ADS  Google Scholar 

  23. F.-Y. Zhang, C.-P. Yang, Opt. Lett. 43, 466 (2018). https://doi.org/10.1364/OL.43.000466

    Article  ADS  Google Scholar 

  24. F. Setiawan, P. Groszkowski, H. Ribeiro, A.A. Clerk, PRX Quantum 2, 030306 (2021). https://doi.org/10.1103/PRXQuantum.2.030306

    Article  ADS  Google Scholar 

  25. P. Delsing, A.N. Cleland, M.J.A. Schuetz, J. Knörzer, G. Giedke, J.I. Cirac, K. Srinivasan, M. Wu, K.C. Balram, C. Bäuerle, T. Meunier, C.J.B. Ford, P.V. Santos, E. Cerda-Méndez, H. Wang, H.J. Krenner, E.D.S. Nysten, M. Weiß, G.R. Nash, L. Thevenard, C. Gourdon, P. Rovillain, M. Marangolo, J.-Y. Duquesne, G. Fischerauer, W. Ruile, A. Reiner, B. Paschke, D. Denysenko, D. Volkmer, A. Wixforth, H. Bruus, M. Wiklund, J. Reboud, J.M. Cooper, Y. Fu, M.S. Brugger, F. Rehfeldt, C. Westerhausen, J. Phys. D: Appl. Phys. 52, 353001 (2019). https://doi.org/10.1088/1361-6463/ab1b04

    Article  Google Scholar 

  26. T. Saiki, A. Tsubosaka, A. Yamaguchi, M. Suzuki, Y. Utsumi, Interdigital transducer generated surface acoustic waves suitable for powder transport. Adv. Powder Technol. 28, 491 (2017). https://doi.org/10.1016/j.apt.2016.11.006

    Article  Google Scholar 

  27. R. Manenti, A.F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P.J. Leek, Nat. Commun. 8, 975 (2017). https://doi.org/10.1038/s41467-017-01063-9

    Article  ADS  Google Scholar 

  28. A.V. Gulakov, S.V. Sazonov, JETP Lett. 79, 610 (2004). https://doi.org/10.1134/1.1790017

    Article  ADS  Google Scholar 

  29. G. Andersson, B. Suri, L. Guo, T. Aref, P. Delsing, Nat. Phys. 15, 1123 (2019). https://doi.org/10.1038/s41567-019-0605-6

    Article  Google Scholar 

  30. B. Kannan, M.J. Ruckriegel, D.L. Campbell, A. Frisk Kockum, J. Braumüller, D.K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B.M. Niedzielski, A. Vepsäläinen, R. Winik, J.L. Yoder, F. Nori, T.P. Orlando, S. Gustavsson, W.D. Oliver, Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583(7818), 775–779 (2020). https://doi.org/10.1038/s41586-020-2529-9

    Article  ADS  Google Scholar 

  31. A.M. Vadiraj, A. Ask, T.G. McConkey, I. Nsanzineza, C.W.S. Chang, A.F. Kockum, C.M. Wilson, Phys. Rev. A 103, 023710 (2021). https://doi.org/10.1103/PhysRevA.103.023710

    Article  ADS  Google Scholar 

  32. G. Andersson, M.K. Ekström, P. Delsing, Phys. Rev. Lett. 124, 240402 (2020). https://doi.org/10.1103/PhysRevLett.124.240402

    Article  ADS  Google Scholar 

  33. M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, P. Delsing, Science 346, 207 (2014)

    Article  ADS  Google Scholar 

  34. B.A. Moores, L.R. Sletten, J.J. Viennot, K.W. Lehnert, Phys. Rev. Lett. 120, 227701 (2018). https://doi.org/10.1103/PhysRevLett.120.227701

    Article  ADS  Google Scholar 

  35. S.A. Batool, S. Asghar, Rahmatullah, S. Qamar, Eur. Phys. J. Plus. 138, 849 (2023)

    Article  Google Scholar 

  36. E.J. Zhang, S. Srinivasan, N. Sundaresan, D.F. Bogorin, Y. Martin, J.B. Hertzberg, J. Timmerwilke, E.J. Pritchett, J.-B. Yau, C. Wang, W. Landers, E.P. Lewandowski, A. Narasgond, S. Rosenblatt, G.A. Keefe, I. Lauer, M.B. Rothwell, D.T. McClure, O.E. Dial, J.S. Orcutt, M. Brink, J.M. Chow, Sci. Adv. 8, eabi6690 (2022)

    Article  Google Scholar 

  37. R. Manenti, A.F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P.J. Leek, Nat. Commun. 8, 975 (2017)

    Article  ADS  Google Scholar 

  38. M.K. Ekström, T. Aref, A. Ask, G. Andersson, B. Suri, H. Sanada, G. Johansson, P. Delsing, New J. Phys. 21, 123013 (2019). https://doi.org/10.1088/1367-2630/ab5ca5

    Article  Google Scholar 

  39. R.H. Hadfield, G. Johansson et al., Superconduct. Dev. Quant. Opt. (Springer, Berlin, 2016)

    Book  Google Scholar 

  40. S.T. Cundiff, A.M. Weiner, Nat. Photonics 4, 760 (2010). https://doi.org/10.1038/nphoton.2010.196

    Article  ADS  Google Scholar 

  41. H.M.M. Alotaibi, B.C. Sanders, Phys. Rev. A 89, 021802 (2014). https://doi.org/10.1103/PhysRevA.89.021802

    Article  ADS  Google Scholar 

  42. A. Wahab, M. Abbas, B.C. Sanders, New J. Phys. 25, 053003 (2023)

    Article  ADS  Google Scholar 

  43. U. Fano, Phys. Rev. 124, 1866 (1961). https://doi.org/10.1103/PhysRev.124.1866

    Article  ADS  Google Scholar 

  44. P.M. Anisimov, J.P. Dowling, B.C. Sanders, Phys. Rev. Lett. 107, 163604 (2011). https://doi.org/10.1103/PhysRevLett.107.163604

    Article  ADS  Google Scholar 

  45. S. He, Y. Li, L.F. Wei, Opt. Express 30, 721 (2022). https://doi.org/10.1364/OE.440027

    Article  ADS  Google Scholar 

  46. B. Lü, W.H. Burkett, M. Xiao, Phys. Rev. A 56, 976 (1997). https://doi.org/10.1103/PhysRevA.56.976

    Article  ADS  Google Scholar 

  47. A. Frisk Kockum, P. Delsing, G. Johansson, Phys. Rev. A 90, 013837 (2014). https://doi.org/10.1103/PhysRevA.90.013837

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Abdul Wahab gratefully acknowledges the financial support from Jiangsu University and the China Postdoctoral Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosen Yang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, A., Abbas, M., Yang, X. et al. Electromagnetically induced acoustic transparency using a superconducting transmon circuit. Eur. Phys. J. Plus 139, 318 (2024). https://doi.org/10.1140/epjp/s13360-024-05069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05069-3

Navigation