Skip to main content
Log in

Electronic and magnetic properties of Mn-doped CdSe nanoribbon: first-principles calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using density functional theory calculation, we have investigated structural, electronic and magnetic properties of doped with Mn armchair and zigzag CdSe nanoribbons with various widths. Our study reflects that all the pure armchair and zigzag nanoribbons show semiconducting properties and their band gap decreases monotonically with increasing ribbon widths. Furthermore, the band gap of doped with Mn atoms nanoribbon is closely related to Mn atoms concentrations and their position. To find the stable magnetic states, Mn-doped nanoribbons were optimized in ferromagnetic and antiferromagnetic states. Our calculations show that the ground state is ferromagnetic for the middle doping armchair. The local magnetic moment of the Mn atom is 4.7μB for w = 8 and decreases depending on the Mn concentration. Calculation results reveal that Mn-doped armchair nanoribbon may be good candidates for spintronics due to their good half-metallic ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Research data are not shared. The manuscript has associated data in a data repository.

References

  1. A.J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu, S.C. Smith, Chem. Phys. Lett. 469, 183 (2009)

    Article  ADS  Google Scholar 

  2. X.J. Du, Z. Chen, J. Zhang, Z.R. Ning, X.L. Fan, Superlattices Microstruct. 67, 40 (2014)

    Article  ADS  Google Scholar 

  3. L. Kou, C. Li, Z. Zhang, W. Guo, J. Phys. Chem. C 114, 1326 (2009)

    Article  Google Scholar 

  4. M. Topsakal, S. Cahangirov, E. Bekaroglu, S. Ciraci, Phys. Rev. B 80, 235119 (2009)

    Article  ADS  Google Scholar 

  5. Y. Yang, X.H. Yan, Y. Xiao, D. Lu, Appl. Phys. Lett. 97, 033106 (2010)

    Article  ADS  Google Scholar 

  6. F.L. Zheng, J.M. Zhang, Y. Zhang, V. Ji, Physica B Condens. Matter 405, 3775 (2010)

    Article  ADS  Google Scholar 

  7. J.M. Zhang, F.L. Zheng, Y. Zhang, V. Ji, J. Mater. Sci. 45, 3259 (2010)

    Article  ADS  Google Scholar 

  8. P. Lou, J.Y. Lee, J. Phys. Chem. C 113, 12637 (2009)

    Article  Google Scholar 

  9. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013)

    Article  Google Scholar 

  10. G.J. Slotman, A. Fasolino, J. Phys. Condens. Matter 25, 045009 (2013)

    Article  ADS  Google Scholar 

  11. H. Kim, K. Yong, Phys. Chem. Chem. Phys. 15, 2109 (2013)

    Article  Google Scholar 

  12. X.F. Wang, W.F. Song, B. Liu, G. Chen, D. Chen, C.W. Zhou, G.Z. Shen, Adv. Funct. Mater. 23, 1202–1209 (2013)

    Article  Google Scholar 

  13. Y. Dai, B. Yu, Y. Ye, P.C. Wu, H. Meng, L. Dai, G.G. Qing, J. Mater. Chem. 22, 18442–18446 (2012)

    Article  Google Scholar 

  14. Y.H. Yu, P.V. Kamat, M. Kuno, Adv. Funct. Mater. 20, 1464–1472 (2010)

    Article  Google Scholar 

  15. L. Zhang, Y. Jia, S. Wang, Z. Li, C. Ji, J. Wei, H. Zhu, K. Wang, D. Wu, E. Shi, Y. Fang, A. Cao, Nano Lett. 10, 3583–3589 (2010)

    Article  ADS  Google Scholar 

  16. M.A. Schreuder, K. Xiao, I.N. Ivanov, S.M. Weiss, S.J. Rosenthal, Nano Lett. 10, 573–576 (2010)

    Article  ADS  Google Scholar 

  17. D. Xu, X. Shi, G. Gao, L. Gui, Y. Tang, J. Phys. Chem. B 104, 5061 (2000)

    Article  Google Scholar 

  18. X.C. Jiang, B. Mayer, T. Herricks, Y.N. Xia, Adv. Mater. 15, 740 (2003)

    Google Scholar 

  19. R. Venugopal, P.I. Lin, C.C. Liu, Y.T. Chen, J. Am. Chem. Soc. 127, 262 (2005)

    Article  Google Scholar 

  20. X.D. Wen, R. Hoffmann, N.W. Ashcroft, Adv. Mater. 25, 261 (2013)

    Article  Google Scholar 

  21. N. Chen, G. Yu, X. Gu, L. Chen, Y. Xie, F. Liu, F. Wang, X. Ye, W. Shi, Chem. Phys. Lett. 595, 91 (2014)

    Article  ADS  Google Scholar 

  22. G. Yu, N. Chen, L. Chen, Y. Xie, F. Wang, X. Ye, Phys. Status Solidi A 211, 952 (2014)

    Article  ADS  Google Scholar 

  23. G. Yu, L. Chen, X. ye, Phys. Lett. A 379, 41–46 (2015)

    Article  ADS  Google Scholar 

  24. J. Deb, D. Paul, U. Sarkar ,AIP Conference Proceedings. vol. 1, p. 030235 (1953)

  25. Y. Niwayama, H. Kura, T. Sato, M. Takahashi, T. Ogawa, Appl. Phys. Lett. 92, 202502 (2008)

    Article  ADS  Google Scholar 

  26. P. Shrivastava, P. Kumar, K. Singh, J. Nanopart. Res. 13, 5077–5085 (2011)

    Article  ADS  Google Scholar 

  27. S.A. Gad, M.Boshta, A.M. Moustafa, A.M. Abo EI-Soud, B.S.Farag, Solid State Sci. 13 (2011) 23

  28. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Article  Google Scholar 

  29. B.R. Beaulac, P.I. Archer, S.T. Ochsenbein, D.R. Gamelin, Adv. Funct. Mater. 18, 3873 (2008)

    Article  Google Scholar 

  30. S. Delikanli, M.Z. Akgul, J.R. Murphy, B. Barman, Y. Tsai, T. Scrace, ACS Nano 9, 12473–12479 (2015)

    Article  Google Scholar 

  31. O. Halder, B. Satpati, P. Rajput et al., Sci. Rep. 9, 1804 (2019)

    Article  ADS  Google Scholar 

  32. Z. Zarhri, A. Abbassi, H. Ez-Zahraouy et al., J. Supercond. Nov. Magn. 28, 2155–2160 (2015)

    Article  Google Scholar 

  33. K.M. Hanif, R.W. Meulenberg, G.F. Strouse, J. Am. Chem. Soc. 124, 11495 (2002)

    Article  Google Scholar 

  34. P.I. Archer, S.A. Santangelo, D.R. Gamelin, Nano Lett. 7, 1037 (2007)

    Article  ADS  Google Scholar 

  35. A. Suneela, B. Amin, I. Ahmad, Curr. Appl. Phys. 12, 184 (2011)

    Google Scholar 

  36. T. Jun-Hong, S. Xiao-Wei, T. Song, Y.H. Ouyang, T. Wang, G. Jiang, J. Supercond. Nov. Magn. 30, 3109–3115 (2017)

    Article  Google Scholar 

  37. C.B. Huang, Z.Y. Wang, H.X. Wu, Y.B. Ni, R.C. Xiao, M. Qi, Comput. Condens. Matter 3, 41–45 (2015)

    Article  Google Scholar 

  38. I.D. Olekseyuk, O.V. Parasyuk, O.A. Dzham et al., J. Solid State Chem. 179, 315–322 (2006)

    Article  ADS  Google Scholar 

  39. D. Vogel, P. Kriiger, J. Pollmann et al., Phys. Rev. B 54, R14314–R14319 (1995)

    Google Scholar 

  40. T.X. Zeng, B.J. Zhao, S.F. Zhu et al., J. Cryst. Growth 316, 15–19 (2011)

    Article  ADS  Google Scholar 

  41. W. Cheng, P.Y. Yu, J. Phys. Chem. Solids 123, 6–10 (2018)

    Article  ADS  Google Scholar 

  42. M. Das, C. Gupta, Phys. Status Solidi B 252, 2280–2289 (2015)

    Article  ADS  Google Scholar 

  43. J. Tian, X. Sun, T. Song, Y. Ouyang, T. Wang, G. Jiang, J. Supercond, Nov. Magn. 30, 3109–3115 (2017)

    Article  Google Scholar 

  44. A. Srivastava, A. Jain, R. Kurchania, N. Tyagi, J. Comput. Theor. Nanosci. 9, 1008–1013 (2012)

    Article  Google Scholar 

  45. R. Ma, H. Zhao, Y. Wang, W. Ji, P. Li, Solid State Commun. 262, 40–43 (2017)

    Article  ADS  Google Scholar 

  46. F. Zheng, Y. Zhang, J. Zhang, K. Xu, J. Appl. Phys. 109, 104313 (2011)

    Article  ADS  Google Scholar 

  47. N. Gorjizadeh, Y. Kawazoe, Mater. Trans. 49, 2445–2447 (2008)

    Article  Google Scholar 

  48. S. Caliskan, F. Hazar, Superlattices Microstruct. 84, 170–180 (2015)

    Article  ADS  Google Scholar 

  49. Y. NiWen, M. GangXia, S. LiZhang, Phys. Lett. A 382, 2354–2360 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ismayilova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismayilova, N.A. Electronic and magnetic properties of Mn-doped CdSe nanoribbon: first-principles calculations. Eur. Phys. J. Plus 139, 321 (2024). https://doi.org/10.1140/epjp/s13360-024-05122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05122-1

Navigation