Skip to main content
Log in

Optimal power flow solution using a learning-based sine–cosine algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Sine–Cosine algorithm (SCA) is efficient but faces challenges in exploitative abilities, slow convergence, and exploration–exploitation balance. This study proposes a novel optimization method, the learning-based sine–cosine algorithm (L-SCA), to solve the optimal power flow (OPF) problem. The basic SCA has been modified with a learning phase operator inspired by TLBO. The SCA handles global exploration, while the learner phase of teaching–learning based optimization (TLBO) offers strong local search capabilities, which can be utilized to enhance the solution neighborhood space provided by the SCA technique. The L-SCA and original SCA algorithms address OPF in IEEE 57-bus, Algerian 59-bus, and IEEE 118-bus power systems, considering twelve cases with a focus on cost savings, voltage stability, voltage profile, emissions, and power losses. The comparative study shows that the proposed L-SCA consistently outperforms standard SCA and other reported methods in all cases for varied-scale standard test systems as well as for a practical power system, within reasonable execution times. For instance, L-SCA in the Algerian 59-bus system cut fuel costs by around 13.13% compared to initial case, equating to annual savings of $2.2 million, while in the IEEE-118 bus system, power loss is significantly reduced to 17.881 MW, marking an 86.5% reduction compared to the base case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon request from the corresponding author. The IEEE 57-bus, Algerian 59-bus, and IEEE 118-bus test system data can be found in references [75, 83], and [88, 89], respectively.

Abbreviations

\(Z_{\min } (x,u)\) :

Objective function

\(x,u\) :

State variables, control variables

\(g,h\) :

Equality and inequality constraints respectively

\(P_{{{\text{losses}}}} ,Q_{{{\text{losses}}}}\) :

Total active and reactive power losses respectively

\(P_{{G_{i} }} ,Q_{{G_{i} }}\) :

Active and reactive power of ith generator

\(P_{{D_{i} }} ,Q_{{D_{i} }}\) :

Active and reactive power demands at ith bus

\(S_{line} ,S_{{line_{i} }}^{\max }\) :

Line flow limit in MVA, upper limit of ith line

NB:

Number of busses

NG, NPQ:

Number of generators, Load busses

NL:

Number of transmission lines

\(P_{{G_{1} }}\) :

Power generated at slack bus

\(P_{{G_{i} }}^{\min } ,P_{{G_{i} }}^{\max } ,Q_{{G_{i} }}^{\min } ,Q_{{G_{i} }}^{\max }\) :

Limits of active and reactive powers of ith generator respectively

\(V_{{G_{i} }}^{\min } ,V_{{G_{i} }}^{\max }\) :

ith Generator voltage limits

\(V_{{L_{i} }}^{\min } ,V_{{L_{i} }}^{\max }\) :

Load bus voltage limits at ith bus

\(T,NT\) :

Regulating transformer tap setting, count of \(T\)

\(T_{i}^{\min } ,T_{i}^{\max }\) :

Limits for discrete tap settings

\(Q_{c} ,{\text{NC}}\) :

Shunt VAR compensation, Count of \(Q_{c}\) devices

\(Q_{{\mathop c\nolimits_{i} }}^{\min } ,Q_{{\mathop c\nolimits_{i} }}^{\max }\) :

Limits on output of shunt VAR compensators at ith bus

\(a_{i} ,b_{i} ,c_{i}\) :

Fuel cost coefficients for the ith generator

\(\alpha_{i} ,\beta_{i} ,\gamma_{i} ,\omega_{i} ,\mu_{i}\) :

Coefficients used to model the emissions produced by the ith generator unit

\(L_{j}\) :

L-index of any jth load bus

\(Y_{ji}\) :

Mutual admittance of line between jth and ith bus

\(Y_{jj}\) :

Sum of admittances connected to jth load bus

\(W\) :

Matrix obtained by partial inversion of bus admittance matrix

\(G_{{L_{i - j} }}\) :

Conductance of line \(L\) between ith and the jth bus

\(\delta_{ij}\) :

Difference in phase angle between ith and the jth bus voltages

\(x_{i,j}^{t} ,P_{{{\text{best}}_{i,j} }}^{t}\) :

Position of current solution and best solution respectively for \(i{\text{th}}\) search agent at \(t{\text{th}}\) iteration in \(j{\text{th}}\) dimension

\(t,t_{\max }\) :

Current iteration number and maximum number of iterations respectively

\(a\), User defined constant:

\(a\) = 2

SCA:

Sine–cosine algorithm

TLBO:

Teaching–learning based optimization

MGOA:

Modified grasshopper optimization algorithm

DSA:

Differential search algorithm

MOMICA:

Multi-objective modified imperialist competitive algorithm

NKEA:

Neighborhood knowledge-based evolutionary algorithm

ESDE-MC:

Enhanced self-adaptive differential evolution with mixed crossover

BHBO:

Black-hole based optimization

ACO:

Ant colony optimization

LCA:

League championship algorithm

PGA:

Parallel GA

FSLP:

Fast successive linear programming

GWO:

Grey wolf optimizer

FPA:

Flower pollination algorithm

ICBO:

Improved colliding bodies optimization

References

  1. Carpentier J (1962) Contribution a l’etude du dispatching economique. Bull Soc Fr électr 3(1):431–447

    Google Scholar 

  2. Hazra J, Sinha A (2011) A multi-objective optimal power flow using particle swarm optimization. Eur Trans Electr Power 21(1):1028–1045. https://doi.org/10.1002/etep.494

    Article  Google Scholar 

  3. Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571. https://doi.org/10.1016/S0142-0615(01)00067-9

    Article  Google Scholar 

  4. Niknam T, Narimani M, Aghaei J et al (2012) Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gener, Transm Distrib 6(6):515–527. https://doi.org/10.1049/iet-gtd.2011.0851

    Article  Google Scholar 

  5. Wang H, Murillo-Sanchez CE, Zimmerman RD et al (2007) On computational issues of market-based optimal power flow. IEEE Trans Power Syst 22(3):1185–1193. https://doi.org/10.1109/tpwrs.2007.901301

    Article  Google Scholar 

  6. Lee K, Park Y, Ortiz J (1985) A united approach to optimal real and reactive power dispatch. IEEE Trans Power Appar Syst 5:1147–1153. https://doi.org/10.1109/tpas.1985.323466

    Article  Google Scholar 

  7. Tinney WF, Hart CE (1967) Power flow solution by newton’s method. IEEE Trans Power Appar Syst 11:1449–1460. https://doi.org/10.1109/tpas.1967.291823

    Article  Google Scholar 

  8. Sun DI, Ashley B, Brewer B et al (1984) Optimal power flow by newton approach. IEEE Trans Power Appar Syst 10:2864–2880. https://doi.org/10.1109/tpas.1984.318284

    Article  Google Scholar 

  9. Reid GF, Hasdorff L (1973) Economic dispatch using quadratic programming. IEEE Trans power appar syst 6:2015–2023. https://doi.org/10.1109/tpas.1973.293582

    Article  Google Scholar 

  10. Dommel HW, Tinney WF (1968) Optimal power flow solutions. IEEE Trans on power appar syst 10:1866–1876. https://doi.org/10.1109/tpas.1968.292150

    Article  Google Scholar 

  11. Wei H, Sasaki H, Kubokawa J et al (1998) An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans Power Syst 13(3):870–877. https://doi.org/10.1109/59.708745

    Article  Google Scholar 

  12. Zehar K, Sayah S (2008) Optimal power flow with environmental constraint using a fast successive linear programming algorithm: application to the algerian power system. Energy convers manag 49(11):3362–3366. https://doi.org/10.1016/j.enconman.2007.10.033

    Article  Google Scholar 

  13. Sakthivel VP, Sathya PD (2020) Large-scale economic load dispatch using squirrel search algorithm. Int J Energy Sect Manage 14(6):1351–1380. https://doi.org/10.1108/ijesm-02-2020-0012

    Article  Google Scholar 

  14. Qiu Z, Deconinck G, Belmans R (2009) A literature survey of optimal power flow problems in the electricity market context. In: 2009 IEEE/PES Power Systems Conference and Exposition. IEEE, pp 1–6. https://doi.org/10.1109/psce.2009.4840099

  15. Mittal U, Nangia U, Jain NK (2022).Computational intelligence-based optimal power flow methods-a review.In: 2022 IEEE Delhi Section Conference (DELCON), IEEE, pp 1–8. https://doi.org/10.1109/delcon54057.2022.9753276

  16. Kumar A, Rizwan M, Nangia U (2020) A hybrid intelligent approach for solar photovoltaic power forecasting: impact of aerosol data. Arab J Sci Eng 45:1715–1732. https://doi.org/10.1007/s13369-019-04183-0

    Article  Google Scholar 

  17. Syed MS, Chintalapudi SV, Sirigiri S (2021) Optimal power flow solution in the presence of renewable energy sources. Iran J Sci Technol Trans Electr Eng 45:61–79. https://doi.org/10.1007/s40998-020-00339-z

    Article  Google Scholar 

  18. Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addion wesley Reading. https://doi.org/10.5860/choice.27-0936

    Book  Google Scholar 

  19. Kennedy J, Eberhart R (1995).Particle swarm optimization.In: Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, pp 1942–1948.

  20. Kumar S, Chaturvedi D (2013) Optimal power flow solution using fuzzy evolutionary and swarm optimization. Int J Electr Power Energy Syst 47:416–423. https://doi.org/10.1016/j.ijepes.2012.11.019

    Article  Google Scholar 

  21. Niknam T, Narimani MR, Azizipanah-Abarghooee R (2012) A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect. Energy Convers Manag 58:197–206. https://doi.org/10.1016/j.enconman.2012.01.017

    Article  Google Scholar 

  22. Narimani MR, Azizipanah-Abarghooee R, Zoghdar-Moghadam-Shahrekohne B et al (2013) A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy 49:119–136. https://doi.org/10.1016/j.energy.2012.09.031

    Article  Google Scholar 

  23. Radosavljević J, Klimenta D, Jevtić M et al (2015) Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm. Electric Power Compon Syst 43(17):1958–1970. https://doi.org/10.1080/15325008.2015.1061620

    Article  Google Scholar 

  24. Pulluri H, Naresh R, Sharma V (2018) A solution network based on stud krill herd algorithm for optimal power flow problems. Soft Comput 22:159–176. https://doi.org/10.1007/s00500-016-2319-3

    Article  Google Scholar 

  25. Pandey RS, Awasthi S (2020) A multi-objective hybrid algorithm for optimal planning of distributed generation. Arab J Sci Eng 45(4):3035–3054. https://doi.org/10.1007/s13369-019-04271-1

    Article  Google Scholar 

  26. Shilaja C, Arunprasath T (2019) Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power. Future Gener Comput Syst 98:708–715. https://doi.org/10.1016/j.future.2018.12.046

    Article  Google Scholar 

  27. El Sehiemy RA, Selim F, Bentouati B et al (2020) A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems. Energy 193:116817. https://doi.org/10.1016/j.energy.2019.116817

    Article  Google Scholar 

  28. Gupta S, Kumar N, Srivastava L (2021) Solution of optimal power flow problem using sine-cosine mutation based modified jaya algorithm: a case study. Energy Sour, Part A: Recovery, Util, Environ Eff. https://doi.org/10.1080/15567036.2021.1957043

    Article  Google Scholar 

  29. Naderi E, Pourakbari-Kasmaei M, Cerna FV et al (2021) A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems. Int J Electr Power Energy Syst 125:106492. https://doi.org/10.1016/j.ijepes.2020.106492

    Article  Google Scholar 

  30. Lai LL, Ma J, Yokoyama R et al (1997) Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Int J Electr Power Energy Syst 19(5):287–292. https://doi.org/10.1016/s0142-0615(96)00051-8

    Article  Google Scholar 

  31. Bakirtzis AG, Biskas PN, Zoumas CE et al (2002) Optimal power flow by enhanced genetic algorithm. IEEE trans on power syst 17(2):229–236. https://doi.org/10.1109/tpwrs.2002.1007886

    Article  Google Scholar 

  32. Vlachogiannis JG, Lee KY (2006) A comparative study on particle swarm optimization for optimal steady-state performance of power systems. IEEE trans power syst 21(4):1718–1728. https://doi.org/10.1109/tpwrs.2006.883687

    Article  Google Scholar 

  33. Adaryani MR, Karami A (2013) Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 53:219–230. https://doi.org/10.1016/j.ijepes.2013.04.021

    Article  Google Scholar 

  34. Khorsandi A, Hosseinian S, Ghazanfari A (2013) Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem. Electric Power Syst Res 95:206–213. https://doi.org/10.1016/j.epsr.2012.09.002

    Article  Google Scholar 

  35. Duman S, Güvenç U, Sönmez Y et al (2012) Optimal power flow using gravitational search algorithm. Energy convers manag 59:86–95. https://doi.org/10.1016/j.enconman.2012.02.024

    Article  Google Scholar 

  36. Bhowmik AR, Chakraborty AK (2015) Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm. Int J Electr Power Energy Syst 64:1237–1250. https://doi.org/10.1016/j.ijepes.2014.09.015

    Article  Google Scholar 

  37. Sivasubramani S, Swarup K (2011) Multi-objective harmony search algorithm for optimal power flow problem. Int J Electr Power Energy Syst 33(3):745–752. https://doi.org/10.1016/j.ijepes.2010.12.031

    Article  Google Scholar 

  38. Sinsuphan N, Leeton U, Kulworawanichpong T (2013) Optimal power flow solution using improved harmony search method. Appl Soft Comput 13(5):2364–2374. https://doi.org/10.1016/j.asoc.2013.01.024

    Article  Google Scholar 

  39. Abbasi M, Abbasi E, Mohammadi-Ivatloo B (2021) Single and multi-objective optimal power flow using a new differential-based harmony search algorithm. J Ambient Intell Humaniz Comput 12(1):851–871. https://doi.org/10.1007/s12652-020-02089-6

    Article  Google Scholar 

  40. Bouchekara H, Abido M, Boucherma M (2014) Optimal power flow using teaching-learning-based optimization technique. Electric Power Syst Res 114:49–59. https://doi.org/10.1016/j.epsr.2014.03.032

    Article  Google Scholar 

  41. Shabanpour-Haghighi A, Seifi AR, Niknam T (2014) A modified teaching–learning based optimization for multi-objective optimal power flow problem. Energy convers manag 77:597–607. https://doi.org/10.1016/j.enconman.2013.09.028

    Article  Google Scholar 

  42. Ghasemi M, Ghavidel S, Gitizadeh M et al (2015) An improved teaching–learning-based optimization algorithm using lévy mutation strategy for non-smooth optimal power flow. Int J Electr Power Energy Syst 65:375–384. https://doi.org/10.1016/j.ijepes.2014.10.027

    Article  Google Scholar 

  43. Amjady N, Fatemi H, Zareipour H (2012) Solution of optimal power flow subject to security constraints by a new improved bacterial foraging method. IEEE Trans Power Syst 27(3):1311–1323. https://doi.org/10.1109/tpwrs.2011.2175455

    Article  Google Scholar 

  44. Roy PK, Paul C (2015) Optimal power flow using krill herd algorithm. Int Trans Electr Energy Syst 25(8):1397–1419. https://doi.org/10.1002/etep.1888

    Article  Google Scholar 

  45. Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm Chaos. Solitons & Fractals 78:10–21. https://doi.org/10.1016/j.chaos.2015.06.020

    Article  MathSciNet  Google Scholar 

  46. Buch H, Trivedi IN, Jangir P (2017) Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Eng 4(1):1286731. https://doi.org/10.1080/23311916.2017.1286731

    Article  Google Scholar 

  47. Taher MA, Kamel S, Jurado F et al (2019) An improved moth-flame optimization algorithm for solving optimal power flow problem. Int Trans Electr Energy Syst 29(3):e2743. https://doi.org/10.1002/etep.2743

    Article  Google Scholar 

  48. Mohamed AAA, Mohamed YS, El-Gaafary AA et al (2017) Optimal power flow using moth swarm algorithm. Electric Power Syst Res 142:190–206. https://doi.org/10.1016/j.epsr.2016.09.025

    Article  Google Scholar 

  49. Bentouati B, Khelifi A, Shaheen AM et al (2021) An enhanced moth-swarm algorithm for efficient energy management based multi dimensions opf problem. J Ambient Intell Humaniz Comput 12:9499–9519. https://doi.org/10.1007/s12652-020-02692-7

    Article  Google Scholar 

  50. Attia AF, El Sehiemy RA, Hasanien HM (2018) Optimal power flow solution in power systems using a novel sine-cosine algorithm. Int J Electr Power Energy Syst 99:331–343. https://doi.org/10.1016/j.ijepes.2018.01.024

    Article  Google Scholar 

  51. Elattar EE, ElSayed SK (2019) Modified jaya algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement. Energy 178:598–609. https://doi.org/10.1016/j.energy.2019.04.159

    Article  Google Scholar 

  52. Warid W (2020) Optimal power flow using the amtpg-jaya algorithm. Appl Soft Comput 91:106252. https://doi.org/10.1016/j.asoc.2020.106252

    Article  Google Scholar 

  53. Hassan MH, Kamel S, Selim A et al (2021) A modified rao-2 algorithm for optimal power flow incorporating renewable energy sources. Mathematics 9(13):1532. https://doi.org/10.3390/math9131532

    Article  Google Scholar 

  54. Abd El-sattar S, Kamel S, Ebeed M et al (2021) An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput 25:4027–4052. https://doi.org/10.1007/s00500-020-05431-4

    Article  Google Scholar 

  55. Wang F, Feng S, Pan Y et al (2023) Dynamic spiral updating whale optimization algorithm for solving optimal power flow problem. J Supercomput. https://doi.org/10.1007/s11227-023-05427-5

    Article  Google Scholar 

  56. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-based syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  57. Mahdad B, Srairi K (2018) A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electr Eng 100:913–933. https://doi.org/10.1007/s00202-017-0539-x

    Article  Google Scholar 

  58. Li N, Li G, Deng Z (2017) An improved sine cosine algorithm based on levy flight. In: 9th International Conference on Digital Image Processing (ICDIP 2017), SPIE, pp 1032–1037. https://doi.org/10.1117/12.2282076

  59. Raut U, Mishra S (2021) Enhanced sine–cosine algorithm for optimal planning of distribution network by incorporating network reconfiguration and distributed generation. Arab J Sci Eng 46(2):1029–1051. https://doi.org/10.1007/s13369-020-04808-9

    Article  Google Scholar 

  60. Raut U, Mishra S (2021) A new pareto multi-objective sine cosine algorithm for performance enhancement of radial distribution network by optimal allocation of distributed generators. Evolut Intell 14(4):1635–1656. https://doi.org/10.1007/s12065-020-00428-2

    Article  Google Scholar 

  61. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-aided des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  62. Rao RV, Savsani VJ, Vakharia D (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform sci 183(1):1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  63. Feshki Farahani H, Rashidi F (2017) An improved teaching-learning-based optimization with differential evolution algorithm for optimal power flow considering hvdc system. J Renew Sustain Energy. https://doi.org/10.1063/1.4989828

    Article  Google Scholar 

  64. Ghasemi M, Ghavidel S, Rahmani S et al (2014) A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng Appl Artif Intell 29:54–69. https://doi.org/10.1016/j.engappai.2013.11.003

    Article  Google Scholar 

  65. Mandal B, Roy PK (2013) Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int J Electr Power Energy Syst 53:123–134. https://doi.org/10.1016/j.ijepes.2013.04.011

    Article  Google Scholar 

  66. Mandal B, Roy PK (2014) Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization. Appl Soft Comput 21:590–606. https://doi.org/10.1016/j.asoc.2014.04.010

    Article  Google Scholar 

  67. Farahani HF, Aghaei J, Rashidi F (2018) Optimal power flow of hvdc system using teaching–learning-based optimization algorithm. Neural Comput Appl 30:3781–3789. https://doi.org/10.1007/s00521-017-2962-3

    Article  Google Scholar 

  68. García JAM, Mena AJG (2013) Optimal distributed generation location and size using a modified teaching–learning based optimization algorithm. Int J Electr Power Energy Syst 50:65–75. https://doi.org/10.1016/j.ijepes.2013.02.023

    Article  Google Scholar 

  69. Kanwar N, Gupta N, Niazi KR et al (2017) Optimal allocation of dgs and reconfiguration of radial distribution systems using an intelligent search-based tlbo. Electric Power Compon Syst 45(5):476–490. https://doi.org/10.1080/15325008.2016.1266714

    Article  Google Scholar 

  70. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  71. Bouchekara H (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput 24:879–888. https://doi.org/10.1016/j.asoc.2014.08.056

    Article  Google Scholar 

  72. Yuryevich J, Wong KP (1999) Evolutionary programming based optimal power flow algorithm. IEEE trans power syst 14(4):1245–1250. https://doi.org/10.1109/59.801880

    Article  Google Scholar 

  73. Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power system. IEEE Trans power Deliv 1(3):346–354. https://doi.org/10.1109/tpwrd.1986.4308013

    Article  Google Scholar 

  74. Abido MA (2003) Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans Power Syst 18(4):1529–1537. https://doi.org/10.1109/TPWRS.2003.818693

    Article  Google Scholar 

  75. Zimmerman, RD, CE Murillo-Sánchez (2016). Matpower 6.0 user’s manual. Dec, 2016.

  76. Gupta S, Kumar N, Srivastava L et al (2021) A robust optimization approach for optimal power flow solutions using rao algorithms. Energies 14(17):5449. https://doi.org/10.3390/en14175449

    Article  Google Scholar 

  77. Taher MA, Kamel S, Jurado F et al (2019) Modified grasshopper optimization framework for optimal power flow solution. Electr Eng 101:121–148. https://doi.org/10.1007/s00202-019-00762-4

    Article  Google Scholar 

  78. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  79. Shaheen AM, El-Sehiemy RA, Farrag SM (2016) Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Gener, Transm Distrib 10(7):1634–1647. https://doi.org/10.1049/iet-gtd.2015.0892

    Article  Google Scholar 

  80. Abaci K, Yamacli V (2016) Differential search algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 79:1–10. https://doi.org/10.1016/j.ijepes.2015.12.021

    Article  Google Scholar 

  81. Prasad D, Mukherjee A, Mukherjee V (2017) Application of chaotic krill herd algorithm for optimal power flow with direct current link placement problem Chaos. Solitons & Fractals 103:90–100. https://doi.org/10.1016/j.chaos.2017.05.037

    Article  MathSciNet  Google Scholar 

  82. Kotb MF, El-Fergany AA (2020) Optimal power flow solution using moth swarm optimizer considering generating units prohibited zones and valve ripples. J Electr Eng Technol 15:179–192. https://doi.org/10.1007/s42835-019-00144-7

    Article  Google Scholar 

  83. Bouchekara H, Abido M, Chaib A et al (2014) Optimal power flow using the league championship algorithm: a case study of the algerian power system. Energy Convers Manag 87:58–70. https://doi.org/10.1016/j.enconman.2014.06.088

    Article  Google Scholar 

  84. Pulluri H, Naresh R, Sharma V (2017) Application of stud krill herd algorithm for solution of optimal power flow problems. Int Trans Electr Energy Syst 27(6):e2316. https://doi.org/10.1002/etep.2316

    Article  Google Scholar 

  85. Pulluri H, Naresh R, Sharma V (2017) An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow. Appl Soft Comput 54:229–245. https://doi.org/10.1016/j.asoc.2017.01.030

    Article  Google Scholar 

  86. Bentouati B, Chaib L, Chettih S (2016) Optimal power flow using the moth flam optimizer: a case study of the algerian power system. Indones J Electr Eng Comput Sci 1(3):431–445. https://doi.org/10.11591/ijeecs.v1.i3.pp431-445

    Article  Google Scholar 

  87. Mahdad B, Bouktir T, Srairi K (2009) Opf with environmental constraints with multi shunt dynamic controllers using decomposed parallel ga: application to the algerian network. J Electr Eng Technol 4(1):55–65. https://doi.org/10.5370/jeet.2009.4.1.055

    Article  Google Scholar 

  88. Zimmerman RD, Murillo-Sánchez CE, Gan D (2006). Matlab power system simulation package (version 3.1 b2).

  89. Christie R (1993). Power systems test case archive. Accessed 4 sept 2022.

  90. Meng A, Zeng C, Wang P et al (2021) A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy 225:120211. https://doi.org/10.1016/j.energy.2021.120211

    Article  Google Scholar 

  91. Bouchekara HR, Chaib AE, Abido MA, El-Sehiemy RA (2016) Optimal power flow using an improved colliding bodies optimization algorithm. Appl Soft Comput 42:119–131. https://doi.org/10.1016/j.asoc.2016.01.041

    Article  Google Scholar 

Download references

Funding

This research study was conducted using internal resources and support from the Electrical Engineering Department of Delhi Technological University. No external funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

UM and SG contributed to conceptualization, methodology, development of algorithm and analysis of simulation results. UM contributed to the writing of the original draft, reviewing and editing. UN and NKJ contributed to conceptualization, validation, reviewing and editing and supervision of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Udit Mittal or Saket Gupta.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This research study falls outside the scope of human subjects’ research and animal experimentation, and, therefore, did not require ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, U., Nangia, U., Jain, N.K. et al. Optimal power flow solution using a learning-based sine–cosine algorithm. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06043-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06043-7

Keywords

Navigation