Skip to main content
Log in

Bioinspired Hollow Mesoporous Silica Nanoparticles Coating on Titanium Alloy with Hierarchical Structure for Modulating Cellular Functions

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

3D-printed Porous Titanium Alloy Implants (pTi), owing to their biologically inertness and relatively smooth surface morphology, adversely affect the biological functions of surrounding cells. To address the challenges, constructing a bioinspired interface that mimics the hierarchical structure of bone tissue can enhance the cellular functions of cells. In this context, Hollow Mesoporous Silica Nanoparticles (HMSNs), renowned for their unique physicochemical properties and superior biocompatibility, offer a promising direction for this research. In this research, the initially synthesized HMSNs were used to construct a “hollow-mesoporous-macroporous” hierarchical bioinspired coating on the pTi surface through the Layer-by-Layer technique. Simultaneously, diverse morphologies of coatings were established by adjusting the deposition strategy of PDDA/HMSNs on the pTi surface (pTi-HMSN-2, pTi-HMSN-4, pTi-HMSN-6). A range of techniques were employed to investigate the physicochemical properties and regulation of cellular biological functions of the diverse HMSN coating strategies. Notably, the pTi-HMSN-4 and pTi-HMSN-6 groups exhibited the uniform coatings, leading to a substantial enhancement in surface roughness and hydrophilicity. Meantime, the coating constructed strategy of pTi-HMSN-4 possessed commendable stability. Based on the aforementioned findings, both pTi-HMSN-4 and pTi-HMSN-6 facilitated the adhesion, spreading, and pseudopodia extension of BMSCs, which led to a notable upsurge in the expression levels of vinculin protein in BMSCs. Comprehensive analysis indicates that the coating, when PDDA/HMSNs are deposited four times, possesses favorable overall performance. The research will provide a solid theoretical basis for the translation of HMSN bioinspired coatings for orthopedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Yang, Z., Xi, Y., Bai, J., Jiang, Z., Wang, S., Zhang, H., Dai, W., Chen, C., Gou, Z., Yang, G., & Gao, C. (2021). Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials, 269, 120534. https://doi.org/10.1016/j.biomaterials.2020.120534.

    Article  Google Scholar 

  2. Guillem-Marti, J., Vidal, E., Girotti, A., Heras-Parets, A., Torres, D., Arias, F. J., Ginebra, M., Rodriguez-Cabello, J., & Manero, J. M. (2023). Functionalization of 3D-Printed titanium scaffolds with elastin-like recombinamers to improve cell colonization and osteoinduction. Pharmaceutics, 15(3), 872. https://doi.org/10.3390/pharmaceutics15030872.

    Article  Google Scholar 

  3. Ma, D., Wang, J., Zheng, M., Zhang, Y., Huang, J., Li, W., Ding, Y., Zhang, Y., Zhu, S., Wu, X., & Guan, S. (2023). Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioactive Materials, 26, 128–141. https://doi.org/10.1016/j.bioactmat.2023.02.021.

    Article  Google Scholar 

  4. Ma, Z., Liu, B., Li, S., Wang, X., Li, J., Yang, J., Tian, S., Wu, C., & Zhao, D. (2023). A novel biomimetic trabecular bone metal plate for bone repair and osseointegration. Regenerative Biomaterials, 10, rbad003. https://doi.org/10.1093/rb/rbad003.

    Article  Google Scholar 

  5. Raucci, M. G., D’Amora, U., Ronca, A., Demitri, C., & Ambrosio, L. (2019). Bioactivation routes of gelatin-based scaffolds to enhance at nanoscale level bone tissue regeneration. Frontiers in Bioengineering and Biotechnology, 7, 27. https://doi.org/10.3389/fbioe.2019.00027.

    Article  Google Scholar 

  6. Bai, H., Zhao, Y., Wang, C., Wang, Z., Wang, J., Liu, H., Feng, Y., Lin, Q., Li, Z., & Liu, H. (2020). Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation. Theranostics, 10(11), 4779. https://doi.org/10.7150/thno.43736.

    Article  Google Scholar 

  7. Wegst, U., Bai, H., Saiz, E., Tomsia, A., & Ritchie, R. (2015). Bioinspired structural materials. Nature Materials, 14(1), 23–36. https://doi.org/10.1038/nmat4089.

    Article  Google Scholar 

  8. Xu, C., Chen, X., Wu, W., Liu, Q., & Ren, L. (2022). Bioinspired multi-metal structures produced via direct ink writing. Journal of Bionic Engineering, 19(6), 1578–1588. https://doi.org/10.1007/s42235-022-00257-2.

    Article  Google Scholar 

  9. Zhang, J., Bai, H., Bai, M., Wang, X., Li, Z., Xue, H., Wang, J., Cui, Y., Wang, H., Wang, Y., Zhou, R., Zhu, X., Xu, M., & Liu, H. (2023). Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Materials Today Bio, 22, 100737. https://doi.org/10.1016/j.mtbio.2023.100737.

    Article  Google Scholar 

  10. Xu, J., Xu, N., Zhou, T., Xiao, X., Gao, B., Fu, J., & Zhang, T. (2017). Polydopamine coatings embedded with silver nanoparticles on nanostructured titania for long-lasting antibacterial effect. Surface and Coatings Technology, 320, 608–613.

    Article  Google Scholar 

  11. Sadeghi, M., Kharaziha, M., & Salimijazi, H. R. (2019). Double layer graphene oxide-PVP coatings on the textured Ti6Al4V for improvement of frictional and biological behavior. Surface and Coatings Technology, 374, 656–665. https://doi.org/10.1016/j.surfcoat.2019.06.048.

    Article  Google Scholar 

  12. Zhou, C., Luo, C., Liu, S., Jiang, S., Liu, X., Li, J., Zhang, X., Wu, X., Sun, J., & Wang, Z. (2022). Pearl-inspired graphene oxide-collagen microgel with multi-layer mineralization through microarray chips for bone defect repair. Materials Today Bio, 15, 100307. https://doi.org/10.1016/j.mtbio.2022.100307.

    Article  Google Scholar 

  13. Qiao, X., Yang, J., Shang, Y., Deng, S., Yao, S., Wang, Z., Guo, Y., & Peng, C. (2020). Magnesium-doped nanostructured titanium surface modulates macrophage-mediated inflammatory response for ameliorative osseointegration. International Journal of Nanomedicine, 15, 7185–7198. https://doi.org/10.2147/ijn.s239550.

    Article  Google Scholar 

  14. Shen, X., Hu, Y., Xu, G., Chen, W., Xu, K., Ran, Q., Ma, P., Zhang, Y., Li, J., & Cai, K. (2014). Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium. ACS Applied Materials & Interfaces, 6(18), 16426–16440. https://doi.org/10.1021/am5049338.

    Article  Google Scholar 

  15. Zhou, P., Li, H., Mao, F., Huang, H., Long, S., He, F., Chen, J., & Wei, S. (2021). Screening the optimal patterned surfaces consisting of cell morphology mimicking micro-pillars and nanotube arrays for the design of titanium implants. Journal of Bionic Engineering, 18, 361–374. https://doi.org/10.1007/s42235-021-0019-x.

    Article  Google Scholar 

  16. Huo, K., Zhang, X., Wang, H., Zhao, L., Liu, X., & Chu, P. K. (2013). Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials, 34(13), 3467–3478. https://doi.org/10.1016/j.biomaterials.2013.01.071.

    Article  Google Scholar 

  17. Yan, Y., Wei, Y., Yang, R., Xia, L., Zhao, C., Gao, B., Zhang, X., Fu, J., Wang, Q., & Xu, N. (2019). Enhanced osteogenic differentiation of bone mesenchymal stem cells on magnesium-incorporated titania nanotube arrays. Colloids and Surfaces B: Biointerfaces, 179, 309–316. https://doi.org/10.1016/j.colsurfb.2019.04.013.

    Article  Google Scholar 

  18. Alvarez echazú, M. I., Renou, S. J., Alvarez, G. S., Desimone, M. F., & Olmedo, D. (2022). Synthesis and evaluation of a chitosan–silica-based bone substitute for tissue engineering. International Journal of Molecular Sciences, 23(21), 13379. https://doi.org/10.3390/ijms232113379.

    Article  Google Scholar 

  19. Li, Z., He, Y., Klausen, L. H., Yan, N., Liu, J., Chen, F., Wen, S., Dong, M., & Zhang, Y. (2021). Growing vertical aligned mesoporous silica thin film on nanoporous substrate for enhanced degradation, drug delivery and bioactivity. Bioactive Materials, 6(5), 1452–1463. https://doi.org/10.1016/j.bioactmat.2020.10.026.

    Article  Google Scholar 

  20. Huang, L., Zhang, Q., Dai, L., Shen, X., Chen, W., & Cai, K. (2017). Phenylboronic acid-modified hollow silica nanoparticles for dual-responsive delivery of doxorubicin for targeted tumor therapy. Regenerative Biomaterials, 4(2), 111–124. https://doi.org/10.1093/rb/rbw045.

    Article  Google Scholar 

  21. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https://doi.org/10.1038/nmat3776.

    Article  Google Scholar 

  22. Wu, D., Zhu, Z. Q., Tang, H. X., Shi, Z. E., Kang, J., Liu, Q., & Qi, J. (2020). Efficacy-shaping nanomedicine by loading calcium peroxide into tumor microenvironment-responsive nanoparticles for the antitumor therapy of prostate cancer. Theranostics, 10(21), 9808. https://doi.org/10.7150/thno.43631.

    Article  Google Scholar 

  23. Jin, T., Wu, D., Liu, X., Xu, J., Ma, B. J., Ji, Y., Jin, Y., Wu, S., Wu, T., & Ma, K. (2020). Intra-articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. Journal of Nanobiotechnology, 18(94), 1–15. https://doi.org/10.1186/s12951-020-00651-0.

    Article  Google Scholar 

  24. Langmuir, I. (1920). The mechanism of the surface phenomena of flotation. Transactions of the Faraday Society, 15, 62–74. https://doi.org/10.1039/tf9201500062.

    Article  Google Scholar 

  25. Sagiv, J. (1980). Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 102(1), 92–98. https://doi.org/10.1021/ja00521a016.

    Article  Google Scholar 

  26. Lopes, M., Abrahim, B., Veiga, F., Seiça, R., Cabral, L. M., Arnaud, P., Andrade, J. C., & Ribeiro, A. J. (2017). Preparation methods and applications behind alginate-based particles. Expert Opinion on Drug Delivery, 14(6), 769–782. https://doi.org/10.1080/17425247.2016.1214564.

    Article  Google Scholar 

  27. Täuber, K., Zhao, Q., Antonietti, M., & Yuan, J. (2015). Tuning the pore size in gradient poly (ionic liquid) membranes by small organic acids. ACS Macro Letters, 4(1), 39–42. https://doi.org/10.1021/mz500674d.

    Article  Google Scholar 

  28. Yang, G. L., He, F. M., Yang, X. F., Wang, X. X., & Zhao, S. F. (2009). In vivo evaluation of bone-bonding ability of RGD‐coated porous implant using layer‐by‐layer electrostatic self‐assembly. Journal of Biomedical Materials Research Part A, 90(1), 175–185. https://doi.org/10.1002/jbm.a.32055.

    Article  Google Scholar 

  29. Li, B., Jiang, B., Boyce, B. M., & Lindsey, B. A. (2009). Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials, 30(13), 2552–2558. https://doi.org/10.1016/j.biomaterials.2009.01.042.

    Article  Google Scholar 

  30. Liu, H., Ding, J., Wang, C., Wang, J., Wang, Y., Yang, M., Jia, Y., Zhang, Y., Chang, F., Li, R., & Chen, X. (2015). Intra-articular transplantation of allogeneic BMMSCs rehabilitates cartilage injury of antigen-induced arthritis. Tissue Engineering Part A, 21(21–22), 2733–2743. https://doi.org/10.1089/ten.tea.2014.0666.

    Article  Google Scholar 

  31. Shao, M., Chang, C., Liu, Z., Chen, K., Zhou, Y., Zheng, G., Huang, Z., Xu, H., Xu, P., & Lu, B. (2019). Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids and Surfaces B: Biointerfaces, 183, 110427. https://doi.org/10.1016/j.colsurfb.2019.110427.

    Article  Google Scholar 

  32. Fu, J., Li, T., Yang, Y., Jiang, L., Wang, W., Fu, L., Zhu, Y., & Hao, Y. (2021). Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials, 268, 120537. https://doi.org/10.1016/j.biomaterials.2020.120537.

    Article  Google Scholar 

  33. Geng, H., Zhao, Y., Liu, J., Cui, Y., Wang, Y., Zhao, Q., & Wang, S. (2016). Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. International Journal of Pharmaceutics, 510(1), 184–194. https://doi.org/10.1016/j.ijpharm.2016.05.067.

    Article  Google Scholar 

  34. Nasiri, N., Mukherjee, S., Panneerselvan, A., Nisbet, D. R., & Tricoli, A. (2018). Optimally hierarchical nanostructured hydroxyapatite coatings for superior prosthesis biointegration. ACS Applied Materials Interfaces, 10(29), 24840–24849. https://doi.org/10.1021/acsami.8b08029.

    Article  Google Scholar 

  35. Yang, W., Han, Q., Chen, H., Li, Y., Guo, X., Zhang, A., Liu, Y., Sun, Y., & Wang, J. (2024). Additive manufactured trabecular-like Ti-6Al-4V scaffolds for promoting bone regeneration. Journal of Materials Science & Technology, 188, 116–130. https://doi.org/10.1016/j.jmst.2023.10.061.

    Article  Google Scholar 

  36. Smith, R., Moule, M., Sule, P., Smith, T., Cirillo, J. D., & Grunlan, J. C. (2017). Polyelectrolyte multilayer nanocoating dramatically reduces bacterial adhesion to polyester fabric. ACS Biomaterials Science Engineering, 3(8), 1845–1852. https://doi.org/10.1021/acsbiomaterials.7b00250.

    Article  Google Scholar 

  37. Hao, Y., Li, S., Han, X., Hao, Y., & Ai, H. (2013). Effects of the surface characteristics of nanoporous titanium oxide films on Ti-24Nb-4Zr-8Sn alloy on the initial adhesion of osteoblast-like MG-63 cells. Experimental and Therapeutic Medicine, 6(1), 241–247. https://doi.org/10.3892/etm.2013.1104.

    Article  Google Scholar 

  38. Ranganathan, S. I., Yoon, D. M., Henslee, A. M., Nair, M. B., Smid, C., Kasper, F. K., & Ferrari, M. (2010). Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia, 6(9), 3448–3456. https://doi.org/10.1016/j.actbio.2010.03.029.

    Article  Google Scholar 

  39. Li, X., Wang, M., Zhang, W., Bai, Y., Liu, Y., Meng, J., & Zhang, L. (2020). A magnesium-incorporated nanoporous titanium coating for rapid osseointegration. International Journal of Nanomedicine, 15, 6593–6603. https://doi.org/10.2147/ijn.s255486.

    Article  Google Scholar 

  40. Liu, C., Zhang, J., Zhao, X., Xu, M., Liu, H., & Zhou, H. (2023). Stability, biomechanics and biocompatibility analysis following different preparation strategies of hierarchical zeolite coatings on titanium alloy surfaces. Frontiers in Bioengineering and Biotechnology, 11, 1337709. https://doi.org/10.3389/fbioe.2023.1337709.

    Article  Google Scholar 

  41. Hida, M., Miyazawa, K., Tsuruta, S., Kurosawa, M., Hata, Y., Kawai, T., & Goto, S. (2013). Effect of heat treatment conditions on the mechanical properties of Ti-6Mo-4Sn alloy for orthodontic wires. Dental Materials Journal, 32(3), 462–467. https://doi.org/10.4012/dmj.2012-118.

    Article  Google Scholar 

  42. Goodarzi, H., Jadidi, K., Pourmotabed, S., Sharifi, E., & Aghamollaei, H. (2018). Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. International Journal of Biological Macromolecules, 126, 620–632. https://doi.org/10.1016/j.ijbiomac.2018.12.125.

    Article  Google Scholar 

  43. Gong, T., Xie, J., Liao, J., Zhang, T., Lin, S., & Lin, Y. (2015). Nanomaterials and bone regeneration. Bone Research, 3(1), 1–7. https://doi.org/10.1038/boneres.2015.29.

    Article  Google Scholar 

  44. Liu, S., Liu, T., Chen, J., Maitz, M., Chen, C., & Huang, N. (2013). Influence of a layer-by‐layer‐assembled multilayer of anti‐CD34 antibody, vascular endothelial growth factor, and heparin on the endothelialization and anticoagulation of titanium surface. Journal of Biomedical Materials Research Part A, 101(4), 1144–1157. https://doi.org/10.1002/jbm.a.34392.

    Article  Google Scholar 

  45. Xiong, S., Lu, X., Zuo, R., Huang, P., & Yang, B. (2022). Regulation of the macrophage phenotype on titanium metal by surface modification. Journal of Bionic Engineering, 19(6), 1625–1636. https://doi.org/10.1007/s42235-022-00242-9.

    Article  Google Scholar 

  46. Ma, D., Zhang, K., Dong, B., She, J., & Zhang, Y. (2023). Study of hydroxyapatite-coated high-strength biodegradable magnesium-based alloy in repairing fracture damage in rats. in vivo, 37(1), 190–203. https://doi.org/10.21873/invivo.13068.

    Article  Google Scholar 

  47. Ding, Z., Wang, Y., Zhou, Q., Ding, Z., Liu, J., He, Q., & Zhang, H. (2019). Microstructure, wettability, corrosion resistance and antibacterial property of Cu-MTa2O5 multilayer composite coatings with different cu incorporation contents. Biomolecules, 10(1), 68. https://doi.org/10.3390/biom10010068.

    Article  Google Scholar 

  48. Vereschaka, A., Grigoriev, S., Chigarev, A., Milovich, F., Sitnikov, N., Andreev, N., & Bublikov, J. (2021). Development of a model of crack propagation in multilayer hard coatings under conditions of stochastic force impact. Materials, 14(2), 260. https://doi.org/10.3390/ma14020260.

    Article  Google Scholar 

  49. Zhao, R., Zhang, X., Chen, F., Man, X., & Jiang, W. (2019). Study on electrochemical degradation of nicosulfuron by IrO2-based DSA electrodes: Performance, kinetics, and degradation mechanism. International Journal of Environmental Research and Public Health, 16(3), 343. https://doi.org/10.3390/ijerph16030343.

    Article  Google Scholar 

  50. Zhu, W. D., Liu, Q. B., Zheng, M., & Wang, X. D. (2008). Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding. Journal of Biomedical Materials Research Part A, 87(2), 429–433. https://doi.org/10.1002/jbm.a.31774.

    Article  Google Scholar 

  51. Krishna, B. V., Xue, W., Bose, S., & Bandyopadhyay, A. (2008). Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomaterialia, 4(3), 697–706. https://doi.org/10.1016/j.actbio.2007.10.005.

    Article  Google Scholar 

  52. Li, H. C., Wang, D. G., Hu, C., Dou, J. H., Yu, H. J., & Chen, C. Z. (2021). Effect of Na2O and ZnO on the microstructure and properties of laser cladding derived CaO-SiO2 ceramic coatings on titanium alloys. Journal of Colloid and Interface Science, 592, 498–508. https://doi.org/10.1016/j.jcis.2021.02.064.

    Article  Google Scholar 

  53. Lu, Z., Wang, J., Qu, L., Kan, G., Zhang, T., Shen, J., Li, Y., Yang, J., Niu, Y., Xiao, Z., Li, Y., & Zhang, X. (2020). Reactive mesoporous silica nanoparticles loaded with limonene for improving physical and mental health of mice at simulated microgravity condition. Bioactive Materials, 5(4), 1127–1137. https://doi.org/10.1016/j.bioactmat.2020.07.006.

    Article  Google Scholar 

  54. Menon, N., & Leong, D. (2016). Cytotoxic effects of phosphonate-functionalized mesoporous silica nanoparticles. ACS Applied Materials Interfaces, 8(3), 2416–2422. https://doi.org/10.1016/j.ijpharm.2021.121079.

    Article  Google Scholar 

  55. Zhao, J., Bu, D., Zhang, N., Zhang, N., Tian, D. N., Ma, L. Y., & Yang, H. F. (2021). Cytotoxicity of mesoporous silica modified by amino and carboxyl groups on vascular endothelial cells. Environmental Toxicology, 36(7), 1422–1433. https://doi.org/10.1002/tox.23138.

    Article  Google Scholar 

  56. Liu, T., Li, L., Teng, X., Huang, X., Liu, H., Chen, D., Ren, J., & He, J. (2011). Tang F. single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials, 32(6), 1657–1668. https://doi.org/10.1016/j.biomaterials.2010.10.035.

    Article  Google Scholar 

  57. Cui, H., Wang, Y., Cui, L., Zhang, P., Wang, X., Wei, Y., & Chen, X. (2014). In vitro studies on regulation of osteogenic activities by electrical stimulus on biodegradable electroactive polyelectrolyte multilayers. Biomacromolecules, 15(8), 3146–3157. https://doi.org/10.1021/bm5007695.

    Article  Google Scholar 

  58. Wu, J., Chen, T., Wang, Z., Chen, X., Qu, S., Weng, J., Zhi, W., & Wang, J. (2020). Joint construction of micro-vibration stimulation and BCP scaffolds for enhanced bioactivity and self-adaptability tissue engineered bone grafts. Journal of Materials Chemistry B, 8(19), 4278–4288. https://doi.org/10.1039/d0tb00223b.

    Article  Google Scholar 

  59. Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters, 7(6), 1686–1691. https://doi.org/10.1021/nl070678d.

    Article  Google Scholar 

  60. Oh, S., Brammer, K. S., Li, Y. J., Teng, D., Engler, A. J., Chien, S., & Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences, 106(7), 2130–2135. https://doi.org/10.1073/pnas.0813200106.

  61. Hu, K., Ji, L., Applegate, K. T., Danuser, G., & Waterman-Storer, C. M. (2007). Differential transmission of actin motion within focal adhesions. Science, 315(5808), 111–115. https://doi.org/10.1126/science.1135085.

    Article  Google Scholar 

  62. Vandrovcova, M., Hanus, J., Drabik, M., Kylian, O., Biederman, H., Lisa, V., & Bacakova, L. (2012). Effect of different surface nanoroughness of titanium dioxide films on the growth of human osteoblast-like MG63 cells. Journal of Biomedical Materials Research Part A, 100(4), 1016–1032. https://doi.org/10.1002/jbm.a.34047.

    Article  Google Scholar 

  63. Auernheimer, V., Lautscham, L. A., Leidenberger, M., Friedrich, O., Kappes, B., Fabry, B., & Goldmann, W. H. (2015). Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission. Journal of Cell Science, 128(18), 3435–3443. https://doi.org/10.1242/jcs.172031.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 82372391, 82001971, 82102358, 82202698, 52105343, U21A2099 and U23A20523); Project of “Medical + X” interdisciplinary innovation team of Norman Bethune Health Science Center of Jilin University (Grant No. 2022JBGS06); Project of youth interdisciplinary innovation team of Jilin University (Grant No. 419070623054); China Postdoctoral Science Foundation (Grant No. 2021M701384); Bethune Plan of Jilin University (Grant No. 2022B27, 2022B03); Wu Jieping Medical Foundation (Grant No. 320.6750.18522); Scientific Development Program of Jilin Province (Grant No. 20220402067GH); Jilin Province Development and Reform Commission (Grant No. 2022C044-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Xu, Haotian Bai or Xin Zhao.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any comer-cial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, H., Wang, J. et al. Bioinspired Hollow Mesoporous Silica Nanoparticles Coating on Titanium Alloy with Hierarchical Structure for Modulating Cellular Functions. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00511-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00511-9

Keywords

Navigation