Skip to main content
Log in

Improvement of Magnetic and Dielectric Properties Through Cd Substitution in Mg–Ni Spinel Ferrite

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study aims to improve the magnetic and dielectric properties of Ni–Mg ferrites by incorporating cadmium. Ni0.6−xCdxMg0.4Fe2O4 crystals were synthesized using the sol–gel method, with doping ratios (x) ranging from 0.00 to 0.40. XRD analysis confirmed the primary cubic phase formation (space group Fd\(\overline{3}\)m), with Ni0.6−xCdxMg0.4Fe2O4 crystallite sizes ranging from 34 to 23 nm. Cationic distribution analysis revealed slight changes in ionic radii angles due to doping, influenced by the difference between Ni (0.69 Å) and Cd (0.95 Å) radii. Cd2+ concentration significantly impacted lattice constant, density and dislocation density. Increasing Cd concentration increased saturation magnetization in VSM measurements, while coercivity and remnant magnetization decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. M.A. Hakim, S.K. Nath, S.S. Sikder, K. Hanium Maria, Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J. Phys. Chem. Solids 74(9), 1316–1321 (2013). https://doi.org/10.1016/j.jpcs.2013.04.011

    Article  CAS  Google Scholar 

  2. S.P. Yadav, K.Y. Rajpure, R. Urkude, Y.M. Hunge, K.V. Chandekar, Dielectric and magneto-electric behavior of (x) Co0.8Mn0.2Fe2O4 and (1−x) PbZr0.52Ti0.48O3 composites. Phys. B Condens. Matter 617, 413118 (2021). https://doi.org/10.1016/j.physb.2021.413118

    Article  CAS  Google Scholar 

  3. R. Kant Sharma, R. Ghose, Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram. Int. 41(10), 14684–14691 (2015). https://doi.org/10.1016/j.ceramint.2015.07.191

    Article  CAS  Google Scholar 

  4. P.L. Leng, M.G. Naseri, E. Saion, A.H. Shaari, M.A. Kamaruddin, Synthesis and characterization of Ni–Zn ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) by thermal treatment method. Adv. Nanopart. 02(04), 378–383 (2013). https://doi.org/10.4236/anp.2013.24052

    Article  CAS  Google Scholar 

  5. G. Bate, Magnetic recording materials since 1975. J. Magn. Magn. Mater. 100(1–3), 413–424 (1991). https://doi.org/10.1016/0304-8853(91)90831-T

    Article  CAS  Google Scholar 

  6. M. Hashim et al., Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2xCrxO4 (0≤x≤1) ferrite nanoparticles. Powder Technol. 229, 37–44 (2012). https://doi.org/10.1016/j.powtec.2012.05.054

    Article  CAS  Google Scholar 

  7. R.M. Rosnan, Z. Othaman, A.A. Ati, Preparation, morphological and structural properties of nanocrystalline Ni–Mg cobalt-ferrite synthesized by the Co-precipitation method. Adv. Mater. Res. 1109, 355–359 (2015). https://doi.org/10.4028/www.scientific.net/amr.1109.355

    Article  Google Scholar 

  8. R.M. Rosnan, Z. Othaman, A.A. Ati, R. Hussin, S. Dabagh, S. Zare, The effect of sintering temperature on the structural and magnetic properties of Ni–Mg substituted CoFe2O4 nanoparticles. Mater. Sci. Forum 846, 352–357 (2016). https://doi.org/10.4028/www.scientific.net/MSF.846.352

    Article  Google Scholar 

  9. P. Hartman, H.K. Chan, Application of the periodic bond chain (PBC) theory and attachment energy consideration to derive the crystal morphology of hexamethylmelamine. Pharm. Res. Off. J. Am. Assoc. Pharm. Sci. 10(7), 1052–1058 (1993). https://doi.org/10.1023/A:1018927109487

    Article  CAS  Google Scholar 

  10. M. Hashim et al., Study of structural, electrical and magnetic properties of Cr doped Ni–Mg ferrite nanoparticle. J. Alloys Compd. 602, 150–156 (2014). https://doi.org/10.1016/j.jallcom.2014.03.013

    Article  CAS  Google Scholar 

  11. M. Hashim et al., Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite. Ceram. Int. 39(2), 1807–1819 (2013). https://doi.org/10.1016/j.ceramint.2012.08.028

    Article  CAS  Google Scholar 

  12. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Cd-doping effect on morphologic, structural, magnetic and electrical properties of Ni0.6xCdxMg0.4Fe2O4 spinel ferrite (0 ≤ x ≤ 0.4). J. Alloys Compd. 803, 964–970 (2019). https://doi.org/10.1016/j.jallcom.2019.06.339

    Article  CAS  Google Scholar 

  13. A.O. Bokuniaeva, A.S. Vorokh, Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. Conf. Ser. 1410(1), 1–6 (2019). https://doi.org/10.1088/1742-6596/1410/1/012057

    Article  CAS  Google Scholar 

  14. S. Mustapha et al., Comparative study of crystallite size using Williamson–Hall and Debye–Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 10(4), 045013 (2019). https://doi.org/10.1088/2043-6254/ab52f7

    Article  Google Scholar 

  15. P.G. Prashanth Kumar, R.A. Shoukat Ali, A.S. Jagadisha, S.D. Umesh, Synthesis and studies of Cr doped Zn ferrites. Mater. Today Proc. 36, 837–840 (2019). https://doi.org/10.1016/j.matpr.2020.07.014

    Article  CAS  Google Scholar 

  16. S. Atiq et al., Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni–Zn ferrite nanoparticles. Ceram. Int. 43(2), 2486–2494 (2017). https://doi.org/10.1016/j.ceramint.2016.11.046

    Article  CAS  Google Scholar 

  17. S. Dolabella, A. Borzì, A. Dommann, A. Neels, Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high-resolution X-ray diffraction: theoretical and practical aspects. Small Methods (2022). https://doi.org/10.1002/smtd.202100932

    Article  PubMed  Google Scholar 

  18. Q. Zhang et al., Effects of calcination temperature on crystal structure and photocatalytic activity of CaIn2O4/In2O3 composites. Ceram. Int. 45(17), 21851–21857 (2019). https://doi.org/10.1016/j.ceramint.2019.07.194

    Article  CAS  Google Scholar 

  19. J. Li, H. Yuan, G. Li, Y. Liu, J. Leng, Cation distribution dependence of magnetic properties of solgel prepared MnFe2O4 spinel ferrite nanoparticles. J. Magn. Magn. Mater. 322(21), 3396–3400 (2010). https://doi.org/10.1016/j.jmmm.2010.06.035

    Article  CAS  Google Scholar 

  20. A.A. Ati, Z. Othaman, A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013). https://doi.org/10.1016/j.molstruc.2013.08.040

    Article  CAS  Google Scholar 

  21. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, O. Cadar, Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni–Mn substitution. Int. J. Mol. Sci. 23(6), 3097 (2022). https://doi.org/10.3390/ijms23063097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.R. Kagdi et al., Influence of Mg substitution on structural, magnetic and dielectric properties of X-type barium–zinc hexaferrites Ba2Zn2xMgxFe28O46. J. Alloys Compd. 741, 377–391 (2018). https://doi.org/10.1016/j.jallcom.2018.01.092

    Article  CAS  Google Scholar 

  23. M.K. Satheeshkumar et al., Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. J. Magn. Magn. Mater. 484, 120–125 (2019). https://doi.org/10.1016/j.jmmm.2019.03.128

    Article  CAS  Google Scholar 

  24. O.M. Hemeda, M.M. Barakat, Effect of hopping rate and jump length of hopping electrons on the conductivity and dielectric properties of Co–Cd ferrite. J. Magn. Magn. Mater. 223(2), 127–132 (2001). https://doi.org/10.1016/S0304-8853(00)00521-7

    Article  CAS  Google Scholar 

  25. C.V. Reddy, S.V. Prabhakarvattikuti, R.V.S.S.N. Ravikumar, S.J. Moon, J. Shim, Influence of calcination temperature on Cd0.3Co0.7Fe2O4 nanoparticles: structural, thermal and magnetic properties. J. Magn. Magn. Mater. 394, 70–76 (2015). https://doi.org/10.1016/j.jmmm.2015.06.054

    Article  CAS  Google Scholar 

  26. N. Alghamdi et al., Structural, magnetic and toxicity studies of ferrite particles employed as contrast agents for magnetic resonance imaging thermometry. J. Magn. Magn. Mater. 497, 165981 (2020). https://doi.org/10.1016/j.jmmm.2019.165981

    Article  CAS  Google Scholar 

  27. R. Tiwari, M. De, H.S. Tewari, S.K. Ghoshal, Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method. Results Phys. 16, 102916 (2020). https://doi.org/10.1016/j.rinp.2019.102916

    Article  Google Scholar 

  28. E. Barsoukov et al., Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ionics 161(1–2), 19–29 (2003). https://doi.org/10.1016/S0167-2738(03)00150-4

    Article  CAS  Google Scholar 

  29. E. Barsoukov, J.R. Macdonald (eds.), Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, Hoboken, 2018)

    Google Scholar 

  30. L. Singh et al., Combustion synthesis of nano-crystalline Bi2/3Cu3Ti2.90Fe0.10O12 using inexpensive TiO2 raw material and its dielectric characterization. Powder Technol. 280, 256–265 (2015). https://doi.org/10.1016/j.powtec.2015.04.025

    Article  CAS  Google Scholar 

  31. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloys Compd. 453(1–2), 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    Article  CAS  Google Scholar 

  32. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals. J. Alloys Compd. 656, 887–896 (2016). https://doi.org/10.1016/j.jallcom.2015.10.045

    Article  CAS  Google Scholar 

  33. M. Bhagavantha Reddy, V.N. Mulay, V. Devender Reddy, P. Venugopal Reddy, Charge transport in mixed LiTi ferrites. Mater. Sci. Eng. B 14(1), 63–69 (1992). https://doi.org/10.1016/0921-5107(92)90330-C

    Article  Google Scholar 

  34. S. Behera, P.R. Das, P. Nayak, S.K. Patri, Structural and electrical properties of Na2Pb2Dy2W2Ti4Ta4O30 ceramic. J. Electron. Mater. 46(2), 1201–1209 (2017). https://doi.org/10.1007/s11664-016-5061-9

    Article  CAS  Google Scholar 

  35. H.A. Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, F. Guinneton, J.R. Gavarri, Electrical impedance spectroscopy analyses and optical properties of the bismuth lutetium tungstate BiLuWO6. Ferroelectrics 515(1), 110–117 (2017). https://doi.org/10.1080/00150193.2017.1367215

    Article  CAS  Google Scholar 

  36. P. Córdoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy. Electrochim. Acta 72, 172–178 (2012). https://doi.org/10.1016/j.electacta.2012.04.020

    Article  CAS  Google Scholar 

  37. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55(21), 6218–6227 (2010). https://doi.org/10.1016/j.electacta.2009.10.065

    Article  CAS  Google Scholar 

  38. L.B. Avila, P.C. Serrano Arambulo, A. Dantas, E.E. Cuevas-Arizaca, D. Kumar, C.K. Müller, Study on the electrical conduction mechanism of unipolar resistive switching prussian white thin films. Nanomaterials 12(16), 1–9 (2022). https://doi.org/10.3390/nano12162881

    Article  CAS  Google Scholar 

  39. L. Singh et al., Dielectric studies of a nano-crystalline CaCu2.90Zn0.10Ti4O12 electro-ceramic by one pot glycine assisted synthesis from inexpensive TiO2 for energy storage capacitors. RSC Adv. 4(95), 52770–52784 (2014). https://doi.org/10.1039/c4ra08915d

    Article  CAS  Google Scholar 

  40. P.A. Jadhav, R.S. Devan, Y.D. Kolekar, B.K. Chougule, Structural, electrical and magnetic characterizations of Ni–Cu–Zn ferrite synthesized by citrate precursor method. J. Phys. Chem. Solids 70(2), 396–400 (2009). https://doi.org/10.1016/j.jpcs.2008.11.019

    Article  CAS  Google Scholar 

  41. I. Ali, M.U. Islam, M. Naeem Ashiq, M.A. Iqbal, H.M. Khan, G. Murtaza, Role of grain boundaries in the conduction of Eu–Ni substituted Y-type hexaferrites. J. Magn. Magn. Mater. 362, 115–121 (2014). https://doi.org/10.1016/j.jmmm.2014.03.022

    Article  CAS  Google Scholar 

  42. S. Türkay, A. Tataroğlu, Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J. Mater. Sci. Mater. Electron. 32(9), 11418–11425 (2021). https://doi.org/10.1007/s10854-021-05349-z

    Article  CAS  Google Scholar 

  43. M.B. Mohamed, H. Wang, H. Fuess, Dielectric relaxation and magnetic properties of Cr doped GaFeO3. J. Phys. D Appl. Phys. 43(45), 455409 (2010). https://doi.org/10.1088/0022-3727/43/45/455409

    Article  CAS  Google Scholar 

  44. C. Bharti, T.P. Sinha, Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sci. 12(4), 498–502 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.12.014

    Article  CAS  Google Scholar 

  45. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram. Int. 45(13), 16458–16465 (2019). https://doi.org/10.1016/j.ceramint.2019.05.177

    Article  CAS  Google Scholar 

  46. S.T. Assar, H.F. Abosheiasha, M.K. El Nimr, Study of the dielectric behavior of Co–Ni–Li nanoferrites. J. Magn. Magn. Mater. 350, 12–18 (2014). https://doi.org/10.1016/j.jmmm.2013.09.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mariem Ben Haj Hamida: Conceptualization; Data curation; formal analysis; investigation; methodology; software; visualization. Writing—original draft. Thabet Mzoughi: conceptualization; data curation; formal analysis. Nejeh Hamdaoui: Data curation; formal analysis; investigation; methodology; project administration; validation; supervision.

Corresponding author

Correspondence to Mariem Ben Haj Hamida.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamida, M.B.H., Mzoughi, T. & Hamdaoui, N. Improvement of Magnetic and Dielectric Properties Through Cd Substitution in Mg–Ni Spinel Ferrite. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03061-z

Keywords

Navigation