Skip to main content
Log in

Nonnegative solutions of a coupled k-Hessian system involving different fractional Laplacians

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper studies the following coupled k-Hessian system with different order fractional Laplacian operators:

$$\begin{aligned} {\left\{ \begin{array}{ll} {S_k}({D^2}w(x))-A(x)(-\varDelta )^{\alpha /2}w(x)=f(z(x)),\\ {S_k}({D^2}z(x))-B(x)(-\varDelta )^{\beta /2}z(x)=g(w(x)). \end{array}\right. } \end{aligned}$$

Firstly, we discuss decay at infinity principle and narrow region principle for the k-Hessian system involving fractional order Laplacian operators. Then, by exploiting the direct method of moving planes, the radial symmetry and monotonicity of the nonnegative solutions to the coupled k-Hessian system are proved in a unit ball and the whole space, respectively. We believe that the present work will lead to a deep understanding of the coupled k-Hessian system involving different order fractional Laplacian operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.: Existence of multiple solutions to the equations of Monge-Ampère type. J. Differ. Equ. 100, 95–118 (1992). https://doi.org/10.1016/0022-0396(92)90127-9

    Article  Google Scholar 

  2. Yang, H., Chang, Y.: On the blow-up boundary solutions of the Monge-Ampère equation with singular weights. Commun. Pure Appl. Anal. 11, 697–708 (2012). https://doi.org/10.3934/cpaa.2012.11.697

    Article  MathSciNet  Google Scholar 

  3. Guan, B., Jian, H.: The Monge-Ampère equation with infinite boundary value. Pac. J. Math. 216, 77–94 (2004). https://doi.org/10.2140/pjm.2004.216.77

    Article  Google Scholar 

  4. Lazer, A., McKenna, P.: On singular boundary value problems for the Monge-Ampère operator. J. Math. Anal. Appl. 197, 341–362 (1996). https://doi.org/10.1006/jmaa.1996.0024

    Article  MathSciNet  Google Scholar 

  5. Zhang, Z.: Boundary behavior of large solutions to the Monge-Ampère equations with weights. J. Differ. Equ. 259, 2080–2100 (2015). https://doi.org/10.2140/gt.2015.19.2925

    Article  MathSciNet  Google Scholar 

  6. Zhang, Z., Wang, K.: Existence and non-existence of solutions for a class of Monge-Ampère equations. J. Differ. Equ. 246, 2849–2875 (2009). https://doi.org/10.1016/j.jde.2009.01.004

    Article  Google Scholar 

  7. Chen, X., Bao, G., Li, G.: Symmetry of solutions for a class of nonlocal Monge-Ampère equations. Complex Var. Elliptic Equ. 67, 129–150 (2022). https://doi.org/10.2140/gt.2015.19.2925

    Article  MathSciNet  Google Scholar 

  8. Bhattacharya, T., Mohammed, A.: Maximum principles for \(k\)-Hessian equations with lower order terms on unbounded domains. J. Geom. Anal. 31, 3820–3862 (2021). https://doi.org/10.1007/s12220-020-00415-0

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985). https://doi.org/10.1007/bf02392544

    Article  MathSciNet  Google Scholar 

  10. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  11. Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Partial Differ. Equ. 52, 641–659 (2015). https://doi.org/10.1007/s00526-014-0727-8

    Article  MathSciNet  Google Scholar 

  12. Li, Y., Ma, P.: Symmetry of solutions for a fractional system. Sci. China Math. 60, 1805–1824 (2017). https://doi.org/10.1007/s11425-016-0231-x

    Article  MathSciNet  Google Scholar 

  13. Shoaib, M., Abdeljawad, T., Sarwar, M., Jarad, F.: Fixed point theorems for multi-valued contractions in \(b\)-metric spaces with applications to fractional differential and integral equations. IEEE Access 7, 127373–127383 (2019). https://doi.org/10.1109/ACCESS.2019.2938635

    Article  Google Scholar 

  14. Bushnaq, S., Shah, K., Tahir, S., Ansari, K., Sarwar, M., Abdeljawad, T.: Computation of numerical solutions to variable order fractional differential equations by using non-orthogonal basis. AIMS Math. 7(6), 10917–10938 (2016). https://doi.org/10.3934/math.2022610

    Article  MathSciNet  Google Scholar 

  15. Shoaib, M., Sarwar, M., Shah, K., Kumam, P.: Fixed point results and its applications to the systems of non-linear integral and differential equations of arbitrary order. J. Nonlinear Sci. Appl. 9(6), 4949–4962 (2016). https://doi.org/10.22436/jnsa.009.06.128

    Article  MathSciNet  Google Scholar 

  16. Escudero, C.: Geometric principles of surface growth. Phys. Rev. Lett. 101, 196102 (2008). https://doi.org/10.1103/PhysRevLett.101.196102

    Article  Google Scholar 

  17. Viaclovsky, J.: Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J. 101, 283–316 (2000). https://doi.org/10.1215/S0012-7094-00-10127-5

    Article  MathSciNet  Google Scholar 

  18. Moll, S., Petitta, F.: Large solutions for nonlinear parabolic equations without absorption terms. J. Funct. Anal. 262, 1566–1602 (2012). https://doi.org/10.1016/j.jfa.2011.11.020

    Article  MathSciNet  Google Scholar 

  19. Jiang, F., Trudinger, N., Yang, X.: On the Dirichlet problem for a class of augmented Hessian equations. J. Differ. Equ. 258, 1548–1576 (2015). https://doi.org/10.1016/j.jde.2014.11.005

    Article  MathSciNet  Google Scholar 

  20. Ji, J., Jiang, F., Dong, B.: On the solutions to weakly coupled system of \(k_{i}\)-Hessian equations. J. Math. Anal. Appl. 513, 126217 (2022). https://doi.org/10.1016/j.jmaa.2022.126217

    Article  Google Scholar 

  21. Wang, G., Yang, Z., Zhang, L., Baleanu, D.: Radial solutions of a nonlinear \(k\)-Hessian system involving a nonlinear operator. Commun. Nonlinear Sci. Numer. Simul. 91, 105396 (2020). https://doi.org/10.1016/j.cnsns.2020.105396

    Article  MathSciNet  Google Scholar 

  22. Zhang, L., Yang, Z., Wang, G.: Classification and existence of positive entire \(k\)-convex radial solutions for generalized nonlinear \(k\)-Hessian system. Appl. Math. J. Chin. Univ. 36, 564–582 (2021). https://doi.org/10.1007/s11766-021-4363-8

    Article  MathSciNet  Google Scholar 

  23. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Commun. Math. Phys. 68, 209–243 (1979). https://doi.org/10.1007/BF01221125

    Article  MathSciNet  Google Scholar 

  24. Cafarelli, L., Gidas, Spruck, B.J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989). https://doi.org/10.1002/cpa.3160420304

    Article  MathSciNet  Google Scholar 

  25. Chen, W., Li, C.: Classifcation of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991). https://doi.org/10.1215/S0012-7094-91-06325-8

    Article  MathSciNet  Google Scholar 

  26. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971). https://doi.org/10.1007/BF00250468

    Article  MathSciNet  Google Scholar 

  27. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in \({\cal{R} }^{n}\). Comment. Math. Helv. 73, 206–231 (1998). https://doi.org/10.1007/s000140050052

    Article  MathSciNet  Google Scholar 

  28. Chen, W., Li, C., Ou, B.: Classifcation of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006). https://doi.org/10.1002/cpa.20116

    Article  Google Scholar 

  29. Chen, W., Li, C., Li, Y.: A direct method of moving planes for fractional Laplacian. Adv. Math. 308, 404–437 (2017). https://doi.org/10.1016/J.AIM.2016.11.038

    Article  MathSciNet  Google Scholar 

  30. Zhang, L., Ahmad, B., Wang, G., Ren, X.: Radial symmetry of solution for fractional \(p\)-Laplacian system. Nonlinear Anal. 196, 111801 (2020). https://doi.org/10.1016/j.na.2020.111801

    Article  MathSciNet  Google Scholar 

  31. Chen, Y., Liu, B.: Symmetry and non-existence of positive solutions for fractional \(p\)-Laplacian systems. Nonlinear Anal. 183, 303–322 (2019). https://doi.org/10.1016/j.na.2019.02.023

    Article  MathSciNet  Google Scholar 

  32. Wang, G., Ren, X., Bai, Z., Hou, W.: Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation. Appl. Math. Lett. 96, 131–137 (2019). https://doi.org/10.1016/j.aml.2019.04.024

    Article  MathSciNet  Google Scholar 

  33. Chen, X., Li, G., Bao, S.: Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems. Commun. Pure Appl. Anal. 21, 1755–1772 (2022). https://doi.org/10.3934/cpaa.2023045

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Lihong Zhang is supported by National Natural Science Foundation of China (No. 12001344) and Guotao Wang is supported by Natural Science Foundation of Shanxi Province, China (No. 20210302123339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, Q., Ahmad, B. et al. Nonnegative solutions of a coupled k-Hessian system involving different fractional Laplacians. Fract Calc Appl Anal (2024). https://doi.org/10.1007/s13540-024-00277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13540-024-00277-1

Keywords

Mathematics Subject Classification

Navigation