Skip to main content
Log in

Changes in the Genome of the Tick-Borne Encephalitis Virus during Cultivation

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3′-untranslated region (3′-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Charrel R.N., Attoui H., Butenko A.M., Clegg J.C., Deubel V., Frolova T.V., Gould E.A., Gritsun T.S., Heinz F.X., Labuda M., Lashkevich V.A., Loktev V., Lundkvist A., Lvov D.V., Mandl C.W., Niedrig M., Papa A., Petrov V.S., Plyusnin A., Randolph S., Süss J., Zlobin V.I., de Lamballerie X. 2014. Tick-borne virus diseases of human interest in Europe. Clin. Microbiol. Infect. 10 (12), 1040‒1055. https://doi.org/10.1111/j.1469-0691.2004.01022.x

    Article  Google Scholar 

  2. Ruzek D.Z., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Ko-zlovskaya L., Matveev A., Miller A.D., Oso-lodkin D.I., Överby A.K., Tikunova N., Tkachev S., Zajkowska J. 2019. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 164, 23–51. https://doi.org/10.1016/j.antiviral.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  3. Khasnatinov M.A., Ustanikova K., Frolova T.V., Pogodina V.V., Bochkova N.G., Levina L.S., Slovak M., Kazimirova M., Labuda M., Klempa B., Eleckova E., Gould E.A., Gritsun T.S. 2009. Non-hemagglutinating flaviviruses: Molecular mechanisms for the emergence of new strains via adaptation to European ticks. PLoS One. 4, e7295. https://doi.org/10.1371/journal.pone.0007295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deviatkin A.A., Kholodilov I.S., Vakulenko Y.A., Karganova G.G., Lukashev A.N. 2020. Tick-borne encephalitis virus: An emerging ancient zoonosis? Viruses. 12, 247. https://doi.org/10.3390/v12020247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang S.S., Liu J.Y., Wang B.Y., Wang W.J., Cui X.M., Jiang J.F., Sun Y., Guo W.B., Pan Y.S., Zhou Y.H., Lin Z.T., Jiang B.G., Zhao L., Cao W.C. 2023. Geographical distribution of Ixodes persulcatus and associated pathogens: Analysis of integrated data from a China field survey and global published data. One Health. 16, 100508. https://doi.org/10.1016/j.onehlt.2023.100508

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chausov E.V., Ternovoi V.A., Protopopova E.V., Kononova J.V., Konovalova S.N., Pershikova N.L., Loktev V.B., Romanenko V.N., Ivanova N.V., Bolshakova N.P., Moskvitina N.S. 2010. Variability of the tick-borne encephalitis virus genome in the 5′ noncoding region derived from ticks Ixodes persulcatus and Ixodes pavlovskyi in Western Siberia. Vector Borne Zoonotic Dis. 10, 365‒375. https://doi.org/10.1089/vbz.2009.0064

    Article  PubMed  Google Scholar 

  7. Ternovoi V.A., Gladysheva A.V., Ponomareva E.P., Mikryukova T.P., Protopopova E.V., Shvalov A.N., Konovalova S.N., Chausov E.V., Loktev V.B. 2019. Variability in the 3′ untranslated regions of the genomes of the different tick-borne encephalitis virus subtypes. Virus Genes. 55, 448‒457. https://doi.org/10.1007/s11262-019-01672-0

    Article  CAS  PubMed  Google Scholar 

  8. Gritsun T.S., Gould E.A. 2006. The 3' unrtanslated region of tick-borne flaviviruses originated by the duplication of long repeat sequences within the open reading frame. Virology. 354, 217‒223. https://doi.org/10.1016/j.virol.2006.03.052

    Article  CAS  PubMed  Google Scholar 

  9. Gritsun T.S., Gould E.A. 2006. Direct repeats in the 3' untranslated regions of mosquito-borne flaviviruses: Possible implications for virus transmission. J. Gen. Virol. 87 (Pt. 11), 3297‒3305. https://doi.org/10.1099/vir.0.82235-0

    Article  CAS  PubMed  Google Scholar 

  10. Gritsun T.S., Gould E.A. 2007. Origin and evolution of flavivirus 5' UTRs and panhandles: Trans-terminal duplications? Virology. 366, 8‒15. https://doi.org/10.1016/j.virol.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez D.E., Filomatori C.V., Gamarnik A.V. 2008. Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′ UTRs. Virology. 375, 223‒235.

    Article  CAS  PubMed  Google Scholar 

  12. Ecker M., Allison S.L., Meixner T., Heinz F.X. 1999. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J. Gen. Virol. 80 (Pt. 1), 179–185. https://doi.org/10.1099/0022-1317-80-1-179

    Article  CAS  PubMed  Google Scholar 

  13. Demina T.V., Dzhioev Y.P., Verkhozina M.M., Kozlova I.V., Tkachev S.E., Plyusnin A., Doroshchen-ko E.K., Lisak O.V., Zlobin V.I. 2010. Genotyping and characterization of the geographical distribution of tick-borne encephalitis virus variants with a set of molecular probes. J. Med. Virol. 82, 965–976. https://doi.org/10.1002/jmv

    Article  CAS  PubMed  Google Scholar 

  14. Kozlova I.V., Demina T.V., Tkachev S.E., Doroshchenko E.K., Lisak O.V., Verkhozina M.M., Karan L.S., Dzhioev Y.P., Paramonov, A.I., Suntsova O.V., Savinova Y.S., Chernoivanova O.O., Ruzek D., Tikunova N.V., Zlobin V.I. 2018. Characteristics of the Baikal subtype of tick-borne encephalitis virus circulating in Eastern Siberia. Acta Biomed. Sci. 3 (4), 53–60. https://doi.org/10.29413/ABS.2018-3.4.9

    Article  Google Scholar 

  15. Dai X., Shang G., Lu S., Yang J., Xu J. 2018. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microbes Infect. 7, 74. https://doi.org/10.1038/s41426-018-0081-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ternovoi V.A., Protopopova E.V., Chausov E.V., Novikov D.V., Leonova G.N., Netesov S.V., Loktev V.B. 2007. Novel variant of tickborne encephalitis virus, Russia. Emer. Infect. Dis. 13, 1574‒1578. https://doi.org/10.3201/eid1310.070158

    Article  Google Scholar 

  17. Chausov E.V., Ternovoy V.A., Protopopova E.V., Konovalova S.N., Kononova Yu.V., Tupota N.L., Moskvitina N.S., Romanenko V.N., Ivanova N.V., Bol’shakova N.P., Leonova G.N., Loktev V.B. 2011. Molecular genetic analysis of the complete genome of tick-borne encephalitis virus (Siberia Subtype): Modern Kolarovo-2008 isolate. Probl. Osobo Opasnykh Infekts. 4 (110), 44–48. https://doi.org/10.21055/0370-1069-2011-4(110)-44-48

    Article  Google Scholar 

  18. Mikryukova T.P., Moskvitina N.S., Kononova Y.V., Korobitsyn I.G., Kartashov M.Y., Tyutenkov O.Y., Protopopova E.V., Romanenko V.N., Chausov E.V., Gashkov S.I., Konovalova S.N., Moskvitin S.S., Tupota N.L., Sementsova A.O., Ternovoi V.A., Loktev V.B. 2014. Surveillance of tick-borne encephalitis virus in wild birds and ticks in Tomsk city and its suburbs (Western Siberia). Ticks Tick Borne Dis. 5 (2), 145‒151. https://doi.org/10.1016/j.ttbdis.2013.10.004

    Article  PubMed  Google Scholar 

  19. Mikriukova T.P., Chausov E.V., Konovalova S.N., Kononova Iu.V., Protopopova E.V., Kartashov M.Iu., Ternovoi V.A., Glushkova L.I., Korabel’nikov I.V., Egorova I.Iu., Loktev V.B. 2014. Genetic diversity of the tick-borne encephalitis virus in Ixodes persulcatus ticks in northeastern European Russia. Parazitologiya. 48 (2), 131‒149.

    CAS  Google Scholar 

  20. Korobitsyn I.G., Moskvitina N.S., Tyutenkov O.Y., Gashkov S.I., Kononova Y.V., Moskvitin S.S., Romanenko V.N., Mikryukova T.P., Protopopova E.V., Kartashov M.Y., Chausov E.V., Konovalova S.N., Tupota N.L., Sementsova A.O., Ternovoi V.A., Loktev V.B. 2021. Detection of tick-borne pathogens in wild birds and their ticks in Western Siberia and high level of their mismatch. Folia Parasitol. (Praha). 68, 2021‒2024. https://doi.org/10.14411/fp.2021.024

    Article  CAS  Google Scholar 

  21. Ponomareva E.P., Ternovoi V.A., Mikryukova T.P., Protopopova E.V., Gladysheva A.V., Shvalov A.N., Konovalova S.N., Chausov E.V., Loktev V.B. 2017. Adaptation of tick-borne encephalitis virus from human brain to different cell cultures induces multiple genomic substitutions. Arch. Virol. 162, 3151‒3156. https://doi.org/10.1007/s00705-017-3442-x

    Article  CAS  PubMed  Google Scholar 

  22. National Research Council. 1996. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press. https://doi.org/10.17226/5140

  23. Syurin V.N. 1970. Prakticheskaya virusologiya (Practical Virology). Moscow: Kolos.

  24. Kuno G., Gubler D.J., Santiago de Weil N.S. 1985. Antigen capture ELISA for the identification of dengue viruses. J. Virol. Methods. 12 (1‒2), 93‒103. https://doi.org/10.1016/0166-0934(85)90011-4

    Article  CAS  PubMed  Google Scholar 

  25. Ternovoi V.A., Kurzhukov G.P., Sokolov Y.V., Ivanov G.Y., Ivanisenko V.A., Loktev A.V., Ryder R.W., Netesov S.V., Loktev V.B. 2003. Tick-borne encephalitis with hemorrhagic syndrome, Novosibirsk region, Russia, 1999. Emer. Infect. Dis. 9, 743‒746. https://doi.org/10.3201/eid0906.030007

    Article  Google Scholar 

  26. Davies T.J., Pedersen A.B. 2008. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. Biol. Sci. 275, 1695‒1701. https://doi.org/10.1098/rspb.2008.0284

    Article  PubMed  PubMed Central  Google Scholar 

  27. Woolhouse M.E.J., Haydon D.T., Antia R. 2005. Emerging pathogens: The epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238‒244. https://doi.org/10.1016/j.tree.2005.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  28. Loverdo C., Lloyd-Smith J.O. 2013. Evolutionary invasion and escape in the presence of deleterious mutations. PLoS One. 8, e61879. https://doi.org/10.1371/journal.pone.0068179

    Article  CAS  Google Scholar 

  29. Sanjuan R., Nebot M.R., Chirico N., Mansky L.M., Belshaw R. 2010. Viral mutation rates. J. Virol. 84, 9733‒9748. https://doi.org/10.1128/JVI.00694-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lalic J., Cuevas J.M., Elena S.F. 2011. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet. 7, e1002378. https://doi.org/10.1371/journal.pgen.1002378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozlovskaya L.I., Osolodkin D.I., Shevtsova A.S., Romanova L.Iu., Rogova Y.V., Dzhivanian T.I., Lyapustin V.N., Pivanova G.P., Gmyl A.P., Palyulin V.A., Karganova G.G. 2010. GAG-binding variants of tick-borne encephalitis virus. Virology. 398, 262–272. https://doi.org/10.1016/j.virol.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  32. Kopecky J., Grubhoffer L., Kovar V., Jindrak L., Vokurkova D. 1999. A putative host cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology. 42, 9–16. https://doi.org/10.1159/000024954

    Article  CAS  PubMed  Google Scholar 

  33. Navarro-Sanchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J.L., Arenzana-Seisdedos F., Despres P. 2003. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 4, 723–728. https://doi.org/10.1038/sj.embor.embor866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mandl C.W. 2005. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 111, 161–174. https://doi.org/10.1016/j.virusres.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  35. Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I. 2003. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine. 21, 4043–4051. https://doi.org/10.1016/s0264-410x(03)00269-x

    Article  CAS  PubMed  Google Scholar 

  36. Mandl C.W., Kroschewski H., Allison S.L., Kofler R., Holzmann H., Meixner T., Heinz F.X. 2001. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 75, 5627–5637. https://doi.org/10.1128/JVI.75.12.5627-5637.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rumyantsev A.A., Murphy B.R., Pletnev A.G. 2006. A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. J. Virol. 80, 1427–1439. https://doi.org/10.1128/JVI.80.3.1427-1439.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakai M., Yoshii K., Sunden Y., Yokozawa K., Hirano M., Kariwa Y. 2014. Variable region of the 3'UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in a mouse model. J. Gen. Virol. 95, 823–835. https://doi.org/10.1099/vir.0.060046-0

    Article  CAS  PubMed  Google Scholar 

  39. Roby J.A., Pijlman G.P., Wilusz J., Khromykh A.A. 2014. Noncoding subgenomic flavivirus RNA: Multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 6, 404‒427. https://doi.org/10.3390/v6020404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bidet K., Garcia-Blanco M.A. 2014. Flaviviral RNAs: Weapons and targets in the war between virus and host. Biochem. J. 462, 215–230. https://doi.org/10.1042/BJ20140456

    Article  CAS  PubMed  Google Scholar 

  41. Hussain M., Asgari S. 2014. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc. Natl. Acad. Sci. U. S. A. 111, 2746–2751. https://doi.org/10.1073/pnas.1320123111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hussain M., Torres S., Schnettler E., Funk A., Grundhoff A., Pijlman G.P., Khromykh A.A., Asgari S. 2012. West Nile virus encodes a microRNA-like small RNA in the 3'untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res. 40, 2210–2223. https://doi.org/10.1093/nar/gkr848

    Article  CAS  PubMed  Google Scholar 

  43. Pijlman G.P., Funk A., Kondratieva N., Leung J., Torres S., van der Aa L., Liu W.J., Palmenberg A.C., Shi P.Y., Hall R.A., Khromykh A.A. 2008. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 4, 579–591. https://doi.org/10.1016/j.chom.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  44. Chapman E.G., Costantino D.A., Rabe J.L., Moon S.L., Wilusz J., Nix J.C., Kieft J.S. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science. 344, 307–310. https://doi.org/10.1126/science.1250897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chapman E.G., Moon S.L., Wilusz J., Kieft J.S. 2014. RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. Elife. 3, e01892. https://doi.org/10.7554/eLife.01892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Funk A., Truong K., Nagasaki T., Torres S., Floden N., Balmori Melian E., Edmonds J., Dong H., Shi P.Y., Khromykh A.A. 2010. RNA structures required for production of subgenomic flavivirus RNA. J. Virol. 84, 11407–11417. https://doi.org/10.1128/JVI.01159-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang R.Y., Hsu T.W., Chen Y.L., Liu S.F., Tsai Y.J., Lin Y.T., Chen Y.S., Fan Y.H., 2013. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet. Microbiol. 166, 11–21. https://doi.org/10.1016/j.vetmic.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  48. Schuessler A., Funk A., Lazear H.M., Cooper D.A., Torres S., Daffis S., Jha B.K., Kumagai Y., Takeuchi O., Hertzog P., Silverman R., Akira S., Barton D.J., Diamond M.S., Khromykh A.A. 2012. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J. Virol. 86, 5708–5718. https://doi.org/10.1128/JVI.00207-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moon S.L., Anderson J.R., Kumagai Y., Wilusz C.J., Akira S., Khromykh A.A., Wilusz J. 2012. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA. 18, 2029–2040. https://doi.org/10.1261/rna.034330.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan Y.H., Nadar M., Chen C.C., Weng C.C., Lin Y.T., Chang R.Y. 2011. Small non-coding RNA modulates Japanese encephalitis virus replication and translation in trans. Virol. J. 8, 492. https://doi.org/10.1186/1743-422X-8-492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kieft J.S., Rabe J.L., Chapman E.G. 2015. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation. RNA Biol. 12, 1169‒1177. https://doi.org/10.1080/15476286.2015.1094599

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Cand. Sci. (Phys.-Math.) A.N. Shvalov for discussion and help in processing the metagenomic sequencing data.

Funding

This work was supported by state contracts no. 9/21 and 7/21 with the State Research Center of Virology and Biotechnology “Vector” (Russian Service for Surveillance on Consumer Rights Protection and Human Wellbeing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Ponomareva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures with animals were carried out in compliance with the effective documents “Rules for Working with Experimental Animals” (https://docs.cntd.ru/document/456016716) and “Guidelines on Rearing and Use of Laboratory Animals” (Washington, 1996). The study was approved by Ethics Committee no. 1 at State Research Center of Virology and Biotechnology “Vector” (protocol no. 1-04.2021 dated April 30, 2021).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternovoi, V.A., Ponomareva, E.P., Protopopova, E.V. et al. Changes in the Genome of the Tick-Borne Encephalitis Virus during Cultivation. Mol Biol 58, 266–278 (2024). https://doi.org/10.1134/S0026893324020146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324020146

Keywords:

Navigation