Skip to main content
Log in

Immune-Mediated Necrotizing Myopathies: Current Landscape

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Immune-mediated necrotizing myopathy (IMNM), characterized by acute or subacute onset, severe weakness, and elevated creatine kinase levels, poses diagnostic and therapeutic challenges. This article provides a succinct overview of IMNM, including clinical features, diagnostic strategies, and treatment approaches.

Recent Findings

Recent insights highlight the different clinical presentations and therapeutic options of IMNM stratified by autoantibody positivity and type. Additionally, recent findings call into question the reported link between statin use and IMNM.

Summary

This review synthesizes current knowledge on IMNM, emphasizing its distinct clinical features and challenging management. The evolving understanding of IMNM underscores the need for a comprehensive diagnostic approach that utilizes a growing range of modalities. Early and aggressive immunomodulatory therapy remains pivotal. Ongoing research aims to refine diagnostic tools and therapeutic interventions for this challenging muscle disorder, underscoring the importance of advancing our understanding to enhance patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bohan A, Peter JB. Polymyositis and dermatomyositis 1. N Engl J Med. 1975;292(7):344–7.

    Article  CAS  PubMed  Google Scholar 

  2. Miller FW, et al. Polymyositis: an overdiagnosed entity. Neurology. 2004;63(2):402–402.

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe Y, et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. J Neurol Neurosurg Psychiatry. 2016;87(10):1038–44.

    Article  PubMed  Google Scholar 

  4. Nakao Y, et al. A Novel antibody which precipitates 7.5s Rna is isolated from a patient with autoimmune-disease. Biochem Biophys Res Commun. 1982;109(4):1332–8.

    Article  CAS  PubMed  Google Scholar 

  5. Allenbach Y, et al. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol. 2020;16(12):689–701.

    Article  CAS  PubMed  Google Scholar 

  6. Miller T, et al. Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J Neurol Neurosurg Psychiatry. 2002;73(4):420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christopher-Stine L, et al. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62(9):2757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mammen AL, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011;63(3):713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–30.

    Article  CAS  PubMed  Google Scholar 

  10. Morikawa S, et al. Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins. J Atheroscler Thromb. 2005;12(3):121–31.

    Article  CAS  PubMed  Google Scholar 

  11. Werner JL, et al. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum. 2012;64(12):4087–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allenbach Y, et al. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies. Medicine. 2014;93(3):150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benveniste O, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 2011;63(7):1961–71.

    Article  CAS  PubMed  Google Scholar 

  14. Bergua C, et al. In vivo pathogenicity of IgG from patients with anti-SRP or anti-HMGCR autoantibodies in immune-mediated necrotising myopathy. Ann Rheum Dis. 2019;78(1):131–9.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer A, et al. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology (Oxford). 2015;54(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  16. •Shelly S, et al. Incidence and prevalence of immune-mediated necrotizing myopathy in adults in Olmsted County, Minnesota. Muscle Nerve. 2022;65:5, 541–546. This study identifies local prevalance of IMNM.

  17. Kassardjian CD, et al. Clinical features and treatment outcomes of necrotizing autoimmune myopathy. JAMA Neurol. 2015;72(9):996–1003.

    Article  PubMed  Google Scholar 

  18. Liang WC, et al. Pediatric necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies. Rheumatology. 2017;56(2):287–93.

    Article  PubMed  Google Scholar 

  19. Wei J, Ketner E, Mammen AL. Increased risk of statin-associated autoimmune myopathy among American Indians. Arthritis Rheumatol. 2022;74(9):1602–3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Close RM, et al. Potential implications of six American Indian patients with myopathy, statin exposure and anti-HMGCR antibodies. Rheumatology. 2021;60(2):692–8.

    Article  PubMed  Google Scholar 

  21. Pinal-Fernandez I, et al. Longitudinal course of disease in a large cohort of myositis patients with autoantibodies recognizing the signal recognition particle. Arthritis Care Res. 2017;69(2):263–70.

    Article  CAS  Google Scholar 

  22. Pinal-Fernandez I, et al. Longitudinal course of disease in a large cohort of myositis patients with autoantibodies recognizing the signal recognition particle. Arthritis Care Res (Hoboken). 2017;69(2):263–70.

    Article  CAS  PubMed  Google Scholar 

  23. Mohassel P, et al. Anti-HMGCR myopathy may resemble limb-girdle muscular dystrophy. Neurol Neuroimmunol Neuroinflamm. 2019;6(1):e523.

    Article  PubMed  Google Scholar 

  24. •Hiebeler, M., et al., Slowly progressive limb-girdle weakness and hyperckemia - limb girdle muscular dystrophy or anti-3-hydroxy-3-methylglutaryl-CoA-reductase-myopathy? J Neuromuscul Dis. 2022;9:(5):607–614. This case report highlights diagnostic challenges in differentiating LGMD from slowly progressing forms of anti-HMGCR IMNM.

  25. Suzuki S, Nishikawa A, Kuwana M, Nishimura H, Watanabe Y, Nakahara J, Hayashi YK, Suzuki N, Nishino I. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients. Orphanet J Rare Dis. 2015;10:61. https://doi.org/10.1186/s13023-015-0277-y.

  26. Trallero-Araguas E, et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 2012;64(2):523–32.

    Article  CAS  PubMed  Google Scholar 

  27. Fiorentino DF, et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1gamma. Arthritis Rheum. 2013;65(11):2954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. ••Allenbach Y, et al. 224th ENMC International Workshop:: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul Disord. 2018. 28(1):87–99. International panel which provided consensus characterization of IMNM clinicopathological, serological and therapeutic findings.

  29. Allenbach Y, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain. 2016;139(Pt 8):2131–5.

    Article  PubMed  Google Scholar 

  30. Tiniakou E, Mammen AL. Idiopathic inflammatory myopathies and malignancy: a comprehensive review. Clin Rev Allergy Immunol. 2017;52(1):20–33.

    Article  CAS  PubMed  Google Scholar 

  31. Kadoya M, et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e290.

    Article  PubMed  PubMed Central  Google Scholar 

  32. •Shelly S, et al. Cancer and immune-mediated necrotizing myopathy: a longitudinal referral case-controlled outcomes evaluation. Rheumatology (Oxford). 2022;62:(1):281–289. This study of malignancy in IMNM with 5 year follow up did not find increased incidence compared to age matched controls.

  33. •Mecoli CA, et al. Subsets of idiopathic inflammatory myositis enriched for contemporaneous cancer relative to the general population. Arthritis Rheumatol. 2023;75:(4):620–629. Contrary to the prior reference, this study with similar follow up showed an increased incidence of malignancy in IMNM

  34. Manousakis G. Inflammatory myopathies. Continuum (Minneap Minn). 2022;28(6):1643–62.

    PubMed  Google Scholar 

  35. Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Immune-mediated necrotizing myopathy. Curr Rheumatol Rep. 2018;20(4):21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ganga HV, Slim HB, Thompson PD. A systematic review of statin-induced muscle problems in clinical trials. Am Heart J. 2014;168(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  37. Cholesterol Treatment Trialists, C. Effect of statin therapy on muscle symptoms: an individual participant data meta-analysis of large-scale, randomised, double-blind trials. Lancet. 2022;400(10355):832–45.

    Article  Google Scholar 

  38. Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol. 2006;97(8A):52C-60C.

    Article  CAS  PubMed  Google Scholar 

  39. Mammen AL. Statin-associated autoimmune myopathy. N Engl J Med. 2016;374(7):664–9.

    Article  CAS  PubMed  Google Scholar 

  40. Vladutiu GD, Isackson PJ. SLCO1B1 variants and statin-induced myopathy. N Engl J Med. 2009;360(3):304.

    Article  CAS  PubMed  Google Scholar 

  41. Grable-Esposito P, et al. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve. 2010;41(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  42. Caughey GE, et al. Association of statin exposure with histologically confirmed idiopathic inflammatory myositis in an australian population. JAMA Intern Med. 2018;178(9):1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mohassel P, Mammen AL. Anti-HMGCR myopathy. J Neuromuscul Dis. 2018;5(1):11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alshehri A, et al. Myopathy with anti-HMGCR antibodies: perimysium and myofiber pathology. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e124.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dalakas MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. Acta Myol. 2020;39(4):289–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Triplett JD, et al. Anti-SRP associated necrotizing autoimmune myopathy presenting with asymptomatically elevated creatine kinase. Muscle Nerve. 2019;59(3):E17–9.

    Article  PubMed  Google Scholar 

  47. •Chow KL, et al. HMGCR autoantibody testing: two tiers required. Pathology. 2022;54:(1):129–131. Characterization of Muscle MRI findings during the clinical and treatment course of IMNM.

  48. Pinal-Fernandez I, et al. Thigh muscle MRI in immune-mediated necrotising myopathy: extensive oedema, early muscle damage and role of anti-SRP autoantibodies as a marker of severity. Ann Rheum Dis. 2017;76(4):681–7.

    Article  PubMed  Google Scholar 

  49. Landon-Cardinal O, et al. Severe axial and pelvifemoral muscle damage in immune-mediated necrotizing myopathy evaluated by whole-body MRI. Neuromuscul Disord. 2019;29:S43–S43.

    Article  Google Scholar 

  50. Fionda L, et al. Muscle MRI in immune-mediated necrotizing myopathy (IMNM): implications for clinical management and treatment strategies. J Neurol. 2023;270(2):960–74.

    Article  PubMed  Google Scholar 

  51. Oh EK, et al. Clinical and radiological features of korean patients with anti-HMGCR myopathy. J Clin Neurol. 2023;19(5):460–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sener U, et al. Needle electromyography and histopathologic correlation in myopathies. Muscle Nerve. 2019;59(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  53. Paganoni S, Amato A. Electrodiagnostic evaluation of myopathies. Phys Med Rehabil Clin N Am. 2013;24(1):193–207.

    Article  PubMed  Google Scholar 

  54. Joyce NC, Oskarsson B, Jin LW. Muscle biopsy evaluation in neuromuscular disorders. Phys Med Rehabil Clin N Am. 2012;23(3):609–31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Allenbach Y, et al. Necrosis in anti-SRP(+) and anti-HMGCR(+)myopathies: role of autoantibodies and complement. Neurology. 2018;90(6):e507–17.

    Article  CAS  PubMed  Google Scholar 

  56. Chung T, et al. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve. 2015;52(2):189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Souza JM, Hoff LS, Shinjo SK. Intravenous human immunoglobulin and/or methylprednisolone pulse therapies as a possible treat-to-target strategy in immune-mediated necrotizing myopathies. Rheumatol Int. 2019;39(7):1201–12.

    Article  PubMed  Google Scholar 

  58. Mammen AL, Tiniakou E. Intravenous immune globulin for statin-triggered autoimmune myopathy. N Engl J Med. 2015;373(17):1680–2.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lim J, et al. Intravenous immunoglobulins as first-line treatment in idiopathic inflammatory myopathies: a pilot study. Rheumatology (Oxford). 2021;60(4):1784–92.

    Article  PubMed  Google Scholar 

  60. Garcia-Rosell M, et al. Signal recognition antibody-positive myopathy and response to intravenous immunoglobulin G (IVIG). J Clin Rheumatol. 2013;19(4):214–7.

    Article  PubMed  Google Scholar 

  61. Valiyil R, et al. Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res (Hoboken). 2010;62(9):1328–34.

    Article  CAS  PubMed  Google Scholar 

  62. Landon-Cardinal O, et al. Rituximab in the treatment of refractory anti-HMGCR immune-mediated necrotizing myopathy. J Rheumatol. 2019;46(6):623–7.

    Article  CAS  PubMed  Google Scholar 

  63. Ramanathan S, et al. Clinical course and treatment of anti-HMGCR antibody-associated necrotizing autoimmune myopathy. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e96.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xiong A, et al. Rituximab in the treatment of immune-mediated necrotizing myopathy: a review of case reports and case series. Ther Adv Neurol Disord. 2021;14:1756286421998918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tiniakou E, et al. Use of proprotein convertase subtilisin/kexin type 9 inhibitors in statin-associated immune-mediated necrotizing myopathy: a case series. Arthritis Rheumatol. 2019;71(10):1723–6.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang H, et al. Plasma exchange therapy in refractory inflammatory myopathy with anti-signal recognition particle antibody: a case series. Rheumatology (Oxford). 2022;61(6):2625–30.

    Article  CAS  PubMed  Google Scholar 

  67. Touat M, et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology. 2018;91(10):e985–94.

    Article  CAS  PubMed  Google Scholar 

  68. Kostine M, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis. 2021;80(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  69. Tiniakou E, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology (Oxford). 2017;56(5):787–94.

    CAS  PubMed  Google Scholar 

  70. ••Wang JX, et al. Outcome predictors of immune-mediated necrotizing myopathy-a retrospective, multicentre study. Rheumatology (Oxford). 2022;61:(9):3824–3829. This study described outcomes associated with various clinical characteristics and treatment approaches in IMNM.

  71. Knauss S, et al. PD1 pathway in immune-mediated myopathies: pathogenesis of dysfunctional T cells revisited. Neurol Neuroimmunol Neuroinflamm. 2019;6(3):e558.

    Article  PubMed  PubMed Central  Google Scholar 

  72. ••Mammen AL, et al. Zilucoplan in immune-mediated necrotising myopathy: a phase 2, randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol. 2023;5:(2):e67-e76. The first phase 2 clinical trial in patients with IMNM.

  73. Aggarwal R, Lundberg IE, Song YW, et al. POS0839 randomized, double-blind, placebo controlled trial to evaluate efficacy and safety of SC abatacept in adults with active idiopathic inflammatory myopathy. Annals of the Rheumatic Diseases 2022;81:711.

  74. Van Thillo A, et al. Physical therapy in adult inflammatory myopathy patients: a systematic review. Clin Rheumatol. 2019;38(8):2039–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Michael L. Miller, MD, PhD for contributing histopathological images and captions.

Author information

Authors and Affiliations

Authors

Contributions

C.K. and F.M. wrote the main manuscript text and table. C.K. prepared the figure.

Corresponding author

Correspondence to Christoforos Koumas.

Ethics declarations

Competing of Interest

The authors declare no competing interests

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koumas, C., Michelassi, F. Immune-Mediated Necrotizing Myopathies: Current Landscape. Curr Neurol Neurosci Rep 24, 141–150 (2024). https://doi.org/10.1007/s11910-024-01337-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-024-01337-y

Keywords

Navigation