Skip to main content
Log in

Multiplicity and concentration of normalized solutions to p-Laplacian equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study a type of p-Laplacian equation

$$\begin{aligned} -\Delta _{p}u =\lambda \left| u\right| ^{p-2}u+\left| u\right| ^{q-2}u,~x \in {\mathbb {R}}^{N}, \end{aligned}$$

with prescribed mass

$$\begin{aligned} \left( \,\int \limits _{{\mathbb {R}}^{N}}|u|^{p}\right) ^{\frac{1}{p}}=c>0, \end{aligned}$$

where \(1<p< q< p^{*}: = \frac{pN}{N-p}\), \(p < N\), \(\lambda \in {\mathbb {R}}\) is a Lagrange multiplier. Firstly, we prove the existence of normalized solutions to p-Laplacian equations and provide accurate descriptions; secondly, we discuss the existence of ground states; finally, we study the radial symmetry of normalized solutions in the mass supercritical case. Besides, we also study normalized solutions to p-Laplacian equation with a potential function V(x)

$$\begin{aligned} -\Delta _{p}u + V(x)\left| u\right| ^{p-2}u =\lambda \left| u\right| ^{p-2}u+\left| u\right| ^{q-2}u,~x \in {\mathbb {R}}^{N}, \end{aligned}$$

under different assumptions on q and the constraint norm c, we prove the existence, nonexistence, concentration phenomenon and exponential decay of normalized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M.: Sharp Gagliardo–Nirenberg inequalities via p-Laplacian type equations. Nonlinear Differ. Equ. Appl. NoDEA 15, 457–472 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  3. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Func. Anal. 272, 4998–5037 (2017)

    Article  Google Scholar 

  4. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Cala. Var. Partial Differ. Equ. 58, 24 (2019)

    Google Scholar 

  5. Bartsch, T., Wang, Z.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R} }^{N}\), Commun. Part. Differ. Equ. 20, 1725–1741 (1995)

    Google Scholar 

  6. Bellazzini, J., Siciliano, G.: Scaling properties of functionals and existence of constrained minimizers. J. Func. Anal. 261, 2486–2507 (2011)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Book  Google Scholar 

  8. Chen, Y., Levine, S., Rao, M.: Linear Growth Functionals in Image Restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  9. Damascelli, L., Pacella, F., Ramaswamy, M.: Symmetry of ground states of p-Laplace equations via the moving plane method. Arch. Rational Mech. Anal. 148, 292–308 (1999)

    Article  MathSciNet  Google Scholar 

  10. Demengel, F., Hebey, E.: On some nonlinear equations involving the \(p\)-Laplacian with critical Sobolev grough. Adv. Differ. Equ. 4, 533–574 (1998)

    Google Scholar 

  11. Du, M., Tian, L., Wang, J.: Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials. Proc. R. Soc. Edinb. Sect. A 149, 617–653 (2019)

    Article  Google Scholar 

  12. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  13. Gou, T., Zhang, Z.: Normalized solutions to the Chern–Simons–Schrödinger system. J. Func. Anal. 280, 108894 (2021)

    Article  Google Scholar 

  14. Gu, L., Zeng, X., Zhou, H.: Eigenvalue problem for a p-Laplacian equation with trapping potential. Nonlinear Anal. 148, 212–227 (2017)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-sharped potential. Ann. Inst. Henri Poincaré Non Linéaire 33, 809–828 (2016)

    Article  Google Scholar 

  17. Jeanjean, L., Luo, T.: Sharp nonexistence results of prescribed \(L^{2}\)-norm solutions for some class of Schrödinger–Poisson and quasi-linear equations. Z. Angew. Math. Phys. 64, 937–954 (2013)

    Article  MathSciNet  Google Scholar 

  18. Jeanjean, L., Luo, T., Wang, Z.: Multiple normalized solutions for quasi-linear Schrödinger equations. J. Differ. Equ. 259, 3894–3928 (2015)

    Article  Google Scholar 

  19. Li, G., Ye, H.: On the concentration phenomenon of \(L^{2}\)-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J. Differ. Equ. 266, 7101–7123 (2019)

    Article  Google Scholar 

  20. Lions, P.: The concentration-compactness principle in the calculus of variations, The locally compact case I. Ann. Inst. Henri Poincaré, Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  21. Lou, Q., Mao, A., You, J.: Standing waves for a class of fractional p-Laplacian equations with a general critical nonlinearity. Math. Meth. Appi. Sci. 44, 960–984 (2021)

    Article  MathSciNet  Google Scholar 

  22. Lou, Q., Qin, Y., Liu, F.: The existence of constrained minimizers related to fractional \(p\)-Laplacian equations. Topol. Methods Nonlinear Anal. 58, 657–676 (2021)

    MathSciNet  Google Scholar 

  23. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Cala. Var. Partial Differ. Equ. 59, 35 (2020)

    Google Scholar 

  24. Mastorakis, N., Fathabadi, H.: On the solution of p-Laplacian for non-newtonian fluid flow. WSEAS Trans. Math. 8, 238–245 (2009)

    MathSciNet  Google Scholar 

  25. Oden, J.: Existence theorems and approximations in nonlinear elasticity. In: Lakshmi-Kantham, E. (ed.) NonIinear Equations in Abstract Spaces. North-Holland, Amsterdam (1978)

    Google Scholar 

  26. Pelissier, M.: SurqueIques problemes non-lineaires en glaciologie, These, Pub1. Math. d’Orsay, 110 (1975)

  27. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  Google Scholar 

  28. Qin, Y., Wang, Z., Zou, L.: Analytical solutions and dynamic behaviors to synchronous oscillation of same bubbles at vertices of cuboid and rectangle. Phys. Fluids 35, 082004 (2023)

    Article  Google Scholar 

  29. Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

    Book  Google Scholar 

  30. Schoemaver, M.: A monodimensional model for fracturing. In: Fasano, A., Primicerio, M. (eds.) Free Boundary Problems: Theory and Applications. Research Notes in Mathemetics, vol. 79, pp. 701–711. Pitman, London (1983)

    Google Scholar 

  31. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)

    Article  MathSciNet  Google Scholar 

  32. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  33. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the critical case. J. Func. Anal. 279, 108610 (2020)

    Article  MathSciNet  Google Scholar 

  34. Uhlenbeck, K.: Regularity for a class of nonlinear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MathSciNet  Google Scholar 

  35. Volker, R.: Nonlinear flow in porous media by finite elements. J. Hydraul. Div. Proc. Am. Sc. Civ. Eng. 95, 2093–2113 (1969)

    Google Scholar 

  36. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  Google Scholar 

  37. Zhang, Z.: Variational, Topological, and Partial Order Methods with Their Applications. Springer, New York (2013)

    Book  Google Scholar 

  38. Zhang, Z., Zhang, Z.: Normalized solutions to p-laplacian equations with combined nonlinearities. Nonlinearity 35, 5621–5663 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhang is supported by National Key R &D Program of China(2022YFA1005601) and NSFC(12031015), Q. Lou is supported by NSFC(12001233), Shandong Province Natural Sciences Fund(ZR2020QA007) and China Postdoctoral Science Fund(2022M711928).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Q., Zhang, Z. Multiplicity and concentration of normalized solutions to p-Laplacian equations. Z. Angew. Math. Phys. 75, 81 (2024). https://doi.org/10.1007/s00033-024-02219-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02219-6

Keywords

Mathematics Subject Classification

Navigation