Skip to main content
Log in

A procedure for the experimental identification of the strain gradient characteristic length

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The aim of this paper is to propose an experimental procedure for determining the characteristic length of a strain gradient model. The identification problem is studied through a virtual pull-out test of a rigid bar along the symmetry axis of a cylindrical strain gradient elastic domain. To allow an accurate parameter identification based on measured data, we investigate the effect of the characteristic length on the mechanical fields for this problem. We see a significant sensitivity of the inflection point of the displacement profile evaluated on the cross section of the cylinder, with respect to the characteristic length. By adjusting the characteristic length of the strain gradient such that the theoretical models match best with experimental measurements of the surface displacement fields, the characteristic length of the strain gradient can be estimated. In order to allow for more efficient analysis and an almost real-time parameter identification, the initial three-dimensional (3D) problem is reduced to a one-dimensional (1D) problem by exploiting the cylindrical symmetry of the problem. As will be shown, an accurate 1D finite element method (FEM) strain gradient solution can be obtained for this simplified problem. Since the cylindrical symmetry is only true in an infinitely long cylinder, specific boundary conditions are constructed on a cylinder of finite length, which is then used for the comparison of the 1D and 3D problems. Results show, however, that the structural response at the inflection point is insensitive to whether the specific boundary conditions are considered or not, which is why the 1D model can be used for parameter identification. Since the proposed approach is methodological, it can be applied to any material. As a prototype problem in this paper, we consider the case of a bar embedded in Portland cement concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Article  Google Scholar 

  2. Al-Rub, R.K.A., Voyiadjis, G.Z.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments. Int. J. Plast. 20(6), 1139–1182 (2004)

    Article  Google Scholar 

  3. Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  Google Scholar 

  4. Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    Article  MathSciNet  Google Scholar 

  5. Barchiesi, E., dell’Isola, F., Hild, F., Seppecher, P.: Two-dimensional continua capable of large elastic extension in two independent directions: asymptotic homogenization, numerical simulations and experimental evidence. Mech. Res. Commun. 103, 103466 (2020)

    Article  Google Scholar 

  6. Barchiesi, E., Misra, A., Placidi, L., Turco, E.: Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 101(11), e202100059 (2021)

    Article  MathSciNet  Google Scholar 

  7. Barchiesi, E., Yang, H., Tran, C.A., Placidi, L., Müller, W.H.: Computation of brittle fracture propagation in strain gradient materials by the FENiCS library. Math. Mech. Solids 26(3), 325–340 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., Qi, C., Efremidis, G., Dorogov, M., Aifantis, E.C.: Gradient elasticity and size effect for the borehole problem. Acta Mech. 229, 3305–3318 (2018)

    Article  MathSciNet  Google Scholar 

  9. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  Google Scholar 

  10. dell’Isola, F., Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  Google Scholar 

  11. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150790 (2016)

    Google Scholar 

  12. dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31, 1231–1282 (2019)

    Article  Google Scholar 

  13. dell’Isola, F., Turco, E., Misra, A., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M.: Force-displacement relationship in micro-metric pantographs: experiments and numerical simulations. C. R. Méc. 347(5), 397–405 (2019)

    Article  Google Scholar 

  14. Eremeyev, V.A., Altenbach, H.: Equilibrium of a second-gradient fluid and an elastic solid with surface stresses. Meccanica 49, 2635–2643 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10(4), 343–352 (1962)

    Article  MathSciNet  Google Scholar 

  16. Junker, P., Riesselmann, J., Balzani, D.: Efficient and robust numerical treatment of a gradient-enhanced damage model at large deformations. Int. J. Numer. Methods Eng. 123(3), 774–793 (2022)

    Article  MathSciNet  Google Scholar 

  17. Mindlin, R.D.: Microstructure in Linear Elasticity. Columbia University New York Department of Civil Engineering and Engineering Mechanics, New York (1963)

    Book  Google Scholar 

  18. Misra, A., Placidi, L., dell’Isola, F., Barchiesi, E.: Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics. Z. Angew. Math. Phys. 72, 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  19. Misra, A., Poorsolhjouy, P.: Grain-and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)

    Article  Google Scholar 

  20. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids 25(10), 1778–1803 (2020)

    Article  MathSciNet  Google Scholar 

  21. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Math. Phys. Sci. 326(1567), 565–584 (1972)

    Google Scholar 

  22. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9, 241–257 (1997)

    Article  MathSciNet  Google Scholar 

  23. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2210), 20170878 (2018)

    MathSciNet  Google Scholar 

  24. Placidi, L., Barchiesi, E., dell’Isola, F., Maksimov, V., Misra, A., Rezaei, N., Scrofani, A., Timofeev, D.: On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular microstructure. Math. Eng. 5, 1–24 (2022)

    Article  MathSciNet  Google Scholar 

  25. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    Article  MathSciNet  Google Scholar 

  26. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69, 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  27. Placidi, L., Andreaus, U., Corte, A.D., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)

    Article  MathSciNet  Google Scholar 

  28. Placidi, Luca, Andreaus, Ugo, Giorgio, Ivan: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  29. Rezaei, N., Barchiesi, E., Timofeev, D., Tran, C.A., Misra, A., Placidi, L.: Solution of a paradox related to the rigid bar pull-out problem in standard elasticity. Mech. Res. Commun. 126, 104015 (2022)

    Article  Google Scholar 

  30. Riesselmann, Johannes, Balzani, Daniel: A simple and efficient lagrange multiplier based mixed finite element for gradient damage. Comput. Struct. 281, 107030 (2023)

    Article  Google Scholar 

  31. Riesselmann, Johannes, Ketteler, Jonas W., Schedensack, Mira, Balzani, Daniel: Rot-free mixed finite elements for gradient elasticity at finite strains. Int. J. Numer. Methods Eng. 122(6), 1602–1628 (2021)

    Article  MathSciNet  Google Scholar 

  32. Riesselmann, J., Ketteler, J.W., Schedensack, M., Balzani, D.: Three-field mixed finite element formulations for gradient elasticity at finite strains. GAMM Mitt. 43(1), e202000002 (2020)

    Article  MathSciNet  Google Scholar 

  33. Savoia, M., Reddy, J.N.: A variational approach to three-dimensional elasticity solutions of laminated composite plates. J. Appl. Mech. 59(2S), S166–S175 (1992). https://doi.org/10.1115/1.2899483

    Article  Google Scholar 

  34. Tenek, L.T., Aifantis, E.C.: On some applications of gradient elasticity to composite materials. Compos. Struct. 53(2), 189–197 (2001)

    Article  Google Scholar 

  35. Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 171153 (2017)

    Article  Google Scholar 

  36. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

Download references

Funding

Erasmus+ (2020-1-IT02-KA103-078163), Deutsche Forschungsgemeinschaft (DFG) (392564687).

Author information

Authors and Affiliations

Authors

Contributions

NR wrote the main manuscript text in consultation with JR, DB, and AM. LP and AM conceived the original idea. Luca Placidi supervised the project. The results were discussed, and the manuscript was commented on by all authors.

Corresponding author

Correspondence to Nasrin Rezaei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, N., Riesselmann, J., Misra, A. et al. A procedure for the experimental identification of the strain gradient characteristic length. Z. Angew. Math. Phys. 75, 80 (2024). https://doi.org/10.1007/s00033-023-02181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02181-9

Keywords

Mathematics Subject Classification

Navigation