Skip to main content
Log in

Action of an Electron Beam on Crystals and Films of Aminium and Ammonium Salts

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The action of an electron beam on crystals of tetramethylethylenediaminium nitrilotriacetate [HMe2NCH2CH2NMe2H]2+[HN(CH2COOH)(CH2COO)2]2, ammonium heptamolybdate tetrahydrate (NH4)6Mo7O24‧4H2O, and polymeric zinc nitrilotrimethylenephosphonate trihydrate (ZnH4L‧3H2O)n, on a lamellar crystal of 2,2'-(ethylenedioxy)di(ethylaminium) trifluoroacetate CF3C(O)O +H3N(CH2CH2O)2CH2CH2NH3+‒O(O)CCF3, and on films of the monoethanolaminium salt of ethylenediaminetetraacetic acid [Н3NCH2CH2OH]+2[(OOCCH2)2NCH2CH2N(CH2COOH)2]2– was studied. A Tescan VEGA II electron microscope was used as an exposure tool. The microrelief was examined at magnifications from 500× to 50000×. The survey was carried out at an accelerating voltage of 20 kV and a working distance of 2–8 mm, using secondary (SE) and backscattered (BSE) electron detectors. A copper–nickel alloy and silicate glass were used as the substrate material for the films. The crystals and films were irradiated with an electron beam of various powers, forming an area 20 × 20 μm in size. At low power, the area dimensions are strictly 20 × 20 μm, and the surface remains relatively flat. An increase in the power or in the exposure time while maintaining the power causes an increase in the size by 5 to 34%. The maximum impact causes the formation of defects in the form of cracks, swellings, bubbles, holes, and craters. The elevation of the surface increases with increasing radiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Nenitescu, C.D., Chemie Generala, Bucharest: Tehnica, 1963.

    Google Scholar 

  2. Nenitescu, C.D., Chimie Organica, Bucharest: Tehnica, 1960.

    Google Scholar 

  3. Barton, D., and Ollis, W.D., Comprehensive Organic Chemistry, Oxford: Pergamon, 1979, vol. 3.

    Google Scholar 

  4. King, R., in Ustanovlenie struktury organicheskikh soyedinenii fizicheskimi i khimicheskimi metodami (Determination of the Structure of Organic Compounds by Physical and Chemical Methods), Moscow: Khimiya, 1967, vol. 1, pp. 367–467.

    Google Scholar 

  5. Moreau, W.M., Semiconductor Lithography: Principles, Practices, and Materials, New York: Plenum, 1988.

    Book  Google Scholar 

  6. Clarke, A.R. and Eberhardt, C.N., Microscopy Techniques for Materials Science, Amsterdam: Elsevier, 2002.

    Book  Google Scholar 

  7. Ito, H., Adv. Polym. Sci., 2005, vol. 172, pp. 37–245. https://doi.org/10.1007/b97574

    Article  CAS  Google Scholar 

  8. Selivanov, G.K., Mozzhukhin, D.D., and Gribov, B.G., Mikroelektronika, 1980, vol. 9, no. 6, pp. 517–539.

    CAS  Google Scholar 

  9. Rumyantcev, R.V., Zolotareva, N.V., Novikova, O.V., Petrov, B.I., Lazarev, N.M., and Semenov, V.V., Crystallogr. Rep., 2021, vol. 66, no. 3, pp. 433–436. https://doi.org/10.1134/S1063774521030214

    Article  Google Scholar 

  10. Semenov, V.V., Novikova, O.V., Rumyantcev, R.V., Petrov, B.I., and Razov, E.N., Crystallogr. Rep., 2022, vol. 67, no. 2, pp. 178–187. https://doi.org/10.1134/S1063774522020158

    Article  CAS  Google Scholar 

  11. Khimicheskii entsiklopedicheskii slovar' (Chemical Encyclopedic Dictionary), Moscow: Sov. Entsiklopediya, 1983, p. 43.

  12. Semenov, V.V., Zolotareva, N.V., Petrov, B.I., Lazarev, N.M., Novikova, O.V., Baranov, E.V., Razov, E.N., Kodochilova, N.A., and Ivanenkova, A.O., Russ. Chem. Bull., 2020, vol. 69, no. 9, pp. 1778–1788. https://doi.org/10.1007/s11172-020-2962-9

    Article  Google Scholar 

  13. Semenov, V.V., Zolotareva, N.V., Novikova, O.V., Petrov, B.I., Lazarev, N.M., Fukin, G.K., Cherkasov, V.K., and Razov, E.N., Russ. Chem. Bull., 2022, vol. 71, no. 5, pp. 980–992. https://doi.org/10.1007/s11172-022-3500-8

    Article  CAS  Google Scholar 

  14. Semenov, V.V., Vestn. Yuzhno-Ural’sk. Gos. Univ., Ser. Khim., 2021, vol. 13, no. 1, pp. 88–96.https://doi.org/10.14529/chem210109.

    Google Scholar 

  15. Kondratenko, Yu.A. and Kochina, T.A., Russ. J. Gen. Chem., 2021, vol. 91, no. 12, pp. 2331–2351. https://doi.org/10.1134/S107036322112001X

    Article  CAS  PubMed  Google Scholar 

  16. Kondratenko, Yu.A., Kochina, T.A., and Fundamensky, V.S., Glass Phys. Chem., 2016, vol. 42, no. 4, pp. 621–627. https://doi.org/10.1134/S1087659616060092

    Article  CAS  Google Scholar 

  17. Kondratenko, Yu.A., Nyanikova, G.G., Molchanova, K.V., and Kochina, T.A., Glass Phys. Chem., 2017, vol. 43, no. 5, p. 445. https://doi.org/10.1134/S108765961705008X

    Article  CAS  Google Scholar 

  18. Fakhriev, A.M., Fakhriev, R.A., and Belkina, M.M., Patent RU 2099631, 1995, Byull. Izobret., 1997, no. 35, p. 534

  19. Bazhenov, S.D., Novitskii, E.G., Vasilevskii, V.P., Grushevenko, E.A., Volkov, A.V., and Bienko, A.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 8, pp. 1045–1063. https://doi.org/10.1134/S1070427219080019

    Article  Google Scholar 

  20. Birgele, I.S., Kemme, A.A., and Kupche, E.L., Kremniiorganicheskie proizvodnye aminospirtov (Organosilicon Derivatives of Amino Alcohols), Lukevics, E.J., Ed., Riga: Zinatne, 1987.

    Google Scholar 

  21. Serova, V.N., Polimernye opticheskie materialy (Polymer Optical Materials), St. Petersburg: Nauchnye Osnovy Tekhnologii, 2015.

    Google Scholar 

  22. Çetinkaya, O., Demirci, G., and Mergo, P., Opt. Mater., 2017, vol. 70, no. 1, pp. 25–30. https://doi.org/10.1016/j.optmat.2017.05.009

    Article  Google Scholar 

  23. Semchikov, Yu.D., Bulgakova, S.A., Semenov, V.V., Ladilina, E.A., Novozhilov, A.V., Korsakov, V.S., and Maksimov, S.I., Patent RU 2044340, Byull. Izobret., 1995, no. 26.

  24. Bulgakova, S.A., Semchikov, Yu.D., Semenov, V.V., Novozhilov, A.V., Korsakov, V.S., and Maksimov, S.I., Polym. Sci., Ser. B, 1995, vol. 37, no. 4, pp. 706–708. https://doi.org/10.1016/j.optmat.2017.05.009

    Article  CAS  Google Scholar 

  25. Maslovskaya, A.G. and Sivunov, A.V., Komp’yut. Issled. Model., 2012, vol. 4, no. 4, pp. 767−780. https://doi.org/10.20537/2076-7633-2012-4-4-767-780

    Article  Google Scholar 

  26. Maslovskaya, A.G., Model. Sist., 2007, vol. 2, no. 14, pp. 40–51. https://doi.org/10.1016/j.optmat.2017.05.009

    Article  CAS  Google Scholar 

  27. Castaing, R., Advances in Electronics and Electron Physics, Martin, L., Ed., New York: Academic, 1960, vol. 13, pp. 317–386. https://doi.org/10.1016/j.optmat.2017.05.009

    Article  CAS  Google Scholar 

  28. Filippov, M.N., Bull. Russ. Acad. Sci.: Phys., 1993, vol. 57, no. 8, pp. 163–171. https://doi.org/10.1016/j.optmat.2017.05.009

    Article  CAS  Google Scholar 

  29. Bakaleinikov, L.A., Galaktionov, E.V., Tret’ya-kov, V.V., and Trop, E.A., Phys. Solid State, 2001, vol. 43, no. 5, pp. 811–817. https://doi.org/10.1016/j.optmat.2017.05.009

    Article  CAS  Google Scholar 

  30. Mel’nikov, A.A. and Potapkin, A.D., Mathematical modeling of thermal phenomena arising from the interaction of an electron beam with semiconductor objects, Materialy XVI Rossiiskogo simpoziuma po rastrovoi elektronnoi mikroskopii i analiticheskim metodam issledovaniya tverdykh tel (Proc. XVI Russian Symp. on Scanning Electron Microscopy and Analytical Methods for Studying Solids), Chernogolovka, 2005.

  31. Kiselev, M.G., Mrochek, Zh.A., and Drozdov, A.V., Elektrofizicheskie i elektrokhimicheskie sposoby obrabotki materialov (Electrophysical and Electrochemical Methods of Materials Processing), Minsk: Novoe Znanie, 2014.

    Google Scholar 

  32. Aslanov, L.A. and Dunaev, S.F., Russ. Chem. Rev., 2018, vol. 87, no. 9, pp. 882–903. https://doi.org/10.1070/RCR4806

    Article  CAS  Google Scholar 

  33. Semenov, V.V., Zolotareva, N.V., Novikova, O.V., Petrov, B.I., Lazarev, N.M., Fukin, G.K., Cherkasov, A.V., and Razov, E.N., Crystallogr. Rep., 2023, vol. 68, no. 2, pp. 247–258. https://doi.org/10.1134/S1063774523020141

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Devices of the Center for Shared Use Research and Educational Center “Physics of Solid-State Nanostructures,” Lobachevsky University, were used in the study.

Funding

Studies were performed within the framework of the government assignment, theme no. FFSE-2023-0005: Organic, Organoelement, and Coordination Compounds as Components of Materials for Modern High Technologies, registry no. 123031000051-4, using the equipment of the Analytical Center for Shared Use, Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences with the support by the grant “Ensuring the Progress of the Material and Technical Infrastructure of Centers for Shared Use of Scientific Equipment (unique identifier RF-2296.61321X0017, agreement no. 075-15-2021-670). Scanning electron microscopic experiments were performed within the framework of the government assignment for the Institute of Applied Physics, Russian Academy of Sciences, for basic research for the period 2021–2023, theme no. 0030-2021-0025.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. N. Razov or V. V. Semenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razov, E.N., Semenov, V.V. Action of an Electron Beam on Crystals and Films of Aminium and Ammonium Salts. Russ J Appl Chem 96, 762–772 (2023). https://doi.org/10.1134/S1070427223070078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223070078

Keywords:

Navigation