Skip to main content
Log in

Features of Application of Adaptive Interferometric Fiber Optic Sensors of Acoustic Emission to Monitor the Condition of Polymer Composite Materials

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The results of an experimental study of the operation of fiber optic sensors (FOS) of acoustic emission introduced into the structure of polymer composite materials (PCM) are presented. The reliability and fault tolerance of FOS under critical mechanical loads on PCM was assessed, and the influence of the presence of FOS embedded into the structure of PCM on the mechanical characteristics of the material was investigated. For demodulation of FOS output signals, the principles of adaptive holographic interferometry based on two-wave mixing at dynamic hologram formed in a photorefractive crystal are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. S. Kolobkov, Polymer composite materials for various aircraft structures (review), Tr. VIAM, 2020, nos. 6–7 (89), p. 38. https://doi.org/10.18577/2307-6046-2020-0-67-38-44

  2. Gutkin, R., Green, C.J., Vangrattanachai, S., Pinho, S.T., Robinson, P., and Curtis, P.T., On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mech. Syst. Signal Process., 2011, vol. 25, no. 4, p. 1393. https://doi.org/10.1016/j.ymssp.2010.11.014

    Article  Google Scholar 

  3. Sause, M.G.R., Müller, T., Horoschenkoff, A., and Horn, S., Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis, Compos. Sci. Technol., 2012, vol. 72, no. 2, p. 167. https://doi.org/10.1016/j.compscitech.2011.10.013

    Article  CAS  Google Scholar 

  4. Surgeon, M. and Wevers, M., Modal analysis of acoustic emission signals from CFRP laminates, NDT & E Int., 2012, vol. 72, no. 2, p. 167. https://doi.org/10.1016/j.compscitech.2011.10.013

    Article  CAS  Google Scholar 

  5. Sause, M.G.R., Schmitt, S., and Kalafat, S., Failure load prediction for fiber-reinforced composites based on acoustic emission, Compos. Sci. Technol., 2018, vol. 164, pp. 24–33. https://doi.org/10.1016/j.compscitech.2018.04.033

    Article  CAS  Google Scholar 

  6. Sharapov, V.M., Musienko, M.P., and Sharapova, E.V., P’ezoelektricheskie datchiki (Piezoelectric Sensors), Moscow: Tekhnosfera, 2006.

  7. Ser’eznov, A.N., Murav’ev, V.V., Stepanova, L.N., Pan’kov, A.F., Taldikin, S.V., Kozhemyakin, V.L., and Popov, S.I., Multiplicated multi-channel acoustic emission system, Defektoskopiya, 1996, no. 8, pp. 71–76.

  8. Bashkov, O.V., Romashko, R.V., Khon, H., Bezruk, M.N., Zaikov, V.I., and Bashkov, I.O., Registration of acoustic emission waves in anisotropic composite plates by fiber-optic sensors, Proc. SPIE, 2019, vol. 11024, pp. 143–147.

    Google Scholar 

  9. Sorgente, M., Zadeh, A.R., and Saidoun, A., Performance comparison between fiber-optic and piezoelectric acoustic emission sensors, Optics11 white paper, 2020.

  10. Chen Rongsheng, Bradshaw Tim, Badcock Rod, Cole Phil, Jarman Paul, Pedder Don, and Fernando Gerard, Linear location of acoustic emission using a pair of novel fibre optic sensors, J. Phys.: Conf. Ser., 2005, vol. 15, pp. 232–236.

    Google Scholar 

  11. Zhou, Z., Huang, M., and Liu, H.C., Review of optical fiber sensors for structural health monitoring and related applications, Photonic Sens., 2019, vol. 9, pp. 212–226.

    Google Scholar 

  12. Verstrynge, E., Lacidogna, G., Accornero, F., and Tomor, A., A review on acoustic emission monitoring for damage detection in masonry structures, Constr. Build. Mater., 2021, vol. 268, p. 121089.

  13. Bashkov, O.V., Romashko. R.V., Zaikov, V.I., Panin, S.V., Bezruk, M.N., Khun, Kh.Kh.A., and Bashkov, I.O., Detecting acoustic-emission signals with fiber-optic interference transducers, Russ. J. Nondestr. Test., 2017, no. 6, pp. 415–421.

  14. Kosheleva, N.A. and Serovaev, G.S., Influence of built-in optic fiber on internal structure of polymer composite material, Vestn. Perm. Fed. Issledovat. Tsentra, 2021, no. 1, pp. 54–63. https://doi.org/10.7242/2658-705X/2021.1.5

  15. Huang Minghua, Zhou Zhi, Huang Ying, and Ou Jinping, A distributed self-sensing FRP anchor rod with built-in optical fiber sensor, Measurement, 2013, vol. 46, pp. 1363–1370.

    Article  Google Scholar 

  16. Kamshilin, A.A., Romashko, R.V., and Kulchin, Y.N., Adaptive interferometry with photorefractive crystals, J. Appl. Phys., 2009, vol. 105, p. 031101.

  17. Di Girolamo, S., Kamshilin, A.A., Romashko, R.V., Kulchin, Y.N., and Launay, J.C., Sensing of multimode-fiber strain by a dynamic photorefractive hologram, Opt. Lett., 2007, vol. 32, pp. 1821–1823.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation (project no. 21-19-00896).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Romashko or O. V. Bashkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashko, R.V., Bashkov, O.V., Efimov, T.A. et al. Features of Application of Adaptive Interferometric Fiber Optic Sensors of Acoustic Emission to Monitor the Condition of Polymer Composite Materials. Russ J Nondestruct Test 60, 16–21 (2024). https://doi.org/10.1134/S106183092360140X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106183092360140X

Keywords:

Navigation