Skip to main content
Log in

Horizontal Pattern of Trees in the Cenopopulation of Larix gmelinii (Rupr.) Rupr. in the Forest Tundra Ecotone on the Taimyr Peninsula

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The features of the horizontal spatial pattern of multi-aged open forests of Gmelin larch (Larix gmelinii (Rupr.) Rupr.), forming the northern limit of tree vegetation in the forest-tundra ecotone in the Eastern part of the Taimyr Peninsula, are considered. It was found that all studied tree stands are characterized by a mosaic structure, in which areas occupied by woody vegetation alternate with open spaces, the area of which ranges from 37 to 50%. In all cases, the composition of the tree layer includes both single trees and their aggregations (biogroups), share of which varies from 17 to 32%. Pair aggregation of trees predominates in biogroups, amounting to 83%. The predominance of the random nature of the location of trees in the formation of the horizontal pattern has been shown, but the specific type of spatial distribution is also determined by the stage of ontogenesis in which the cenopopulation is located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Notes

  1. http://www.pogodaiklimat.ru/climate/20891.htm.

REFERENCES

  1. Kryuchkov, V.V., The northernmost forest areas on the globe on the river Lukunskaya in the Khatanga river basin, Bot. J., 1972, vol. 57, no. 10, pp. 1213–1220.

    Google Scholar 

  2. Payette, S., Fortin, M.J., and Gamache, I., The subarctic forest-tundra: the structure of a biome in a changing climate, Bioscience, 2001, vol. 51, pp. 709–718. https://doi.org/10.1641/0006-3568(2001)051[0709:TSFTTS]2.0.CO;2

    Article  Google Scholar 

  3. Clements, F.E., Nature and structure of the climax, J. Ecol., 1936, vol. 24, pp. 253–284.

    Article  Google Scholar 

  4. Ranson, K.J., Montesano, P.M., and Nelson, R., Object based mapping of the circumpolar taiga–tundra ecotone with MODIS tree cover, Remote Sens. Environ., 2011, vol. 115, pp. 3670–3680. https://doi.org/10.1016/j.rse.2011.09.006

    Article  Google Scholar 

  5. Montesano, P.M., Sun, G., Dubayah, R.O., and Ranson, K.J., Spaceborne potential for examining taiga–tundra ecotone form and vulnerability, Biogeosciences, 2016, vol. 13, pp. 3847–3861. https://doi.org/10.5194/bg-13-3847-2016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Callaghan, T.V., Crawford, R.M., Eronen, M., et al., The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research, Ambio, 2002, no. 12, pp. 3–5.

  7. Stocker, T.F., Qin, G.-K., Plattner, L.V., et al., Technical Summary, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., et al., Eds., Cambridge: Cambridge Univ. Press, 2014, pp. 33–115. https://doi.org/10.1017/CBO9781107415324.005

  8. Bader, J., Climate science: The origin of regional Arctic warming, Nature, 2014, vol. 509, pp. 167–168. https://doi.org/10.1038/509167a

    Article  CAS  PubMed  Google Scholar 

  9. Holtmeier, F.-K. and Broll, G., Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales, Global Ecol. Biogeogr., 2005, vol. 14, pp. 395–410. https://doi.org/10.1111/j.1466-822X.2005.00168.x

    Article  Google Scholar 

  10. Grabarnik, P.Ya., Analysis of the horizontal structure of a forest stand: Model approach, Lesovedenie, 2010, no. 2, pp. 77–85.

  11. Dalen, L. and Hofgaard, A., Differential regional treeline dynamics in the Scandes Mountains, Arct. Antarct. Alp. Res., 2005, vol. 37, pp. 284–296. [0284:DRTDIT]2.0.CO;2https://doi.org/10.1657/1523-0430(2005)037

  12. Danby, R.K. and Hik, D.S., Variability, contingency and rapid change in recent subarctic alpine tree line dynamics, J. Ecol., 2007, vol. 95, pp. 352–363. https://doi.org/10.1111/j.1365-2745.2006.01200.x

    Article  Google Scholar 

  13. Frost, G.V., Epstein, H.E., and Walker, D.A., Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra, Environ. Res. Lett., 2014, vol. 9, pp. 1264-1277. https://doi.org/10.1088/1748-9326/9/2/025004

    Article  Google Scholar 

  14. Haugo, R.D., Halpern, C.B., and Bakker, J.D., Landscape context and long-term tree influences shape the dynamics of forest-meadow ecotones in mountain ecosystems, Ecosphere, 2011, vol. 2, no. 8, pp. 1–24. https://doi.org/10.1890/ES11-00110.1

    Article  Google Scholar 

  15. Lloyd, A.H., Yoshikawa, K., Fastie, C.L., et al., Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska, Permafrost Periglacial Processes, 2003, vol. 14, no. 2, pp. 93–101. https://doi.org/10.1002/ppp.446

    Article  Google Scholar 

  16. Kharuk, V.I., Burenina, T.A., and Fedotova, E.F., Analysis of the “forest-tundra” ecotone based on space photography data, Lesovedenie, 1999, no. 3, pp. 59–67.

  17. Abaimov, A.P., Bondarev, A.I., Zyryanova, O.A., and Shitova, S.A., Lesa Krasnoyarskogo Zapolyar’ya (Polar Forests of Krasnoyarsk Region), Novosibirsk: Nauka, 1997.

  18. Tyulina, L.N., Forest vegetation of Khatanga region near the northern timberline, Tr. Ark. Inst., 1937, vol. 63, pp. 83–180.

    Google Scholar 

  19. Knorre, A.V., Open woodlands and open spaces of Ary-Mas, in Ary-Mas. Prirodnye usloviya, flora i rastitel’nost' samogo severnogo v mire lesnogo massiva (Ary-Mas. Environments, Flora and Vegetation of the World’s Northernmost Forest Area), Leningrad: Nauka, 1978, pp. 162–183.

  20. Pospelov, I.N., Pospelova, E.B., and Chinenko, S.V., Tundra open forests and open spaces in the Lukunskoy river basin (eastern Taimyr), Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Sovremennye problemy pritundrovykh lesov” (Proc. All-Russ. Conf. Int. Part. “Modern Problems of Tundra Forests”), Arkhangelsk, 2012, pp. 174-180.

  21. Pospelov, I.N. and Pospelova, E.B., On the northern limit Gmelin’s larch (Larix gmelinii) distribution in the Eastern Taimyr, Bot. Zh., 2013, vol. 98, no. 5, pp. 621–629.

    Google Scholar 

  22. Abaimov, A.P. and Bondarev, A.I., Criteria for identifying categories of forest lands in sparse forests of the North, Lesovedenie, 1997, no. 1, pp. 45–49.

  23. Bondarev, A.I., Taxation sketch of the world’s northernmost forests, in Lesnaya taksatsiya i lesoustroistvo (Forest Taxation and Forest Management), Krasnoyarsk: Krasnoyarsk. Politekh. Inst., 1989, pp. 35–39.

  24. Bondarev, A., Age distribution patterns in open boreal Dahurican larch forests of Central Siberia, For. Ecol. Manage., 1997, vol. 93, no. 3, pp. 205–214. https://doi.org/10.1016/S0378-1127(96)03952-7

    Article  Google Scholar 

  25. Sukachev, V.N. and Zonn, S.V., Metodologicheskie ukazaniya k izucheniyu tipov lesa (Methodological Guidelines for Studying Forest Types), Moscow: Nauka, 1961.

  26. OST 56-69-83. Ploshchadi probnye lesoustroitel’nye. Metod zakladki (Industrial Standard 56-69‒83. Forest Surveying Sample Plots. Coupe Demarcation Method), Moscow: Goskomles SSSR, 1983.

  27. Greig-Smith, P., The use of random and contiguous quadrats in the study of the structure of plant communities, Ann. Bot., 1952, vol. 16, pp. 293–316.

    Article  Google Scholar 

  28. Plotnikov, V.V., On the paths of development of woody plants in connection with the dynamics of their numbers in the community, Ekologiya, 1973, no. 3, pp. 44–51.

  29. Kuz'michev, V.V., Zakonomernosti dinamiki drevostoev: printsipy i modeli (Patterns of the Dynamics of Forest Stands: Principles and Models), Novosibirsk: Nauka, 2013.

  30. Buzykin, A.I., Gavrikov, V.L., Sekretenko, O.P., and Khlebopros, R.G., Analysis of the structure of tree cenoses of different ages, in Analiz struktury drevesnykh tsenozov (Analysis of the Structure of Woody Cenoses), Novosibirsk: Nauka, 1985, pp. 50–80.

  31. Greig-Smit, P., Kolichestvennaya ekologiya rastenii (Quantitative Plant Ecology), Moscow: Mir, 1967.

  32. Morisita, M., Measuring of the dispersion of individuals and analysis of the distributional patterns, Mem. Fac. Sci., Kyushu Univ., Ser. E (Biol.), 1959, vol. 2, no. 4, pp. 215–235.

    Google Scholar 

  33. Ripley, B.D., Spatial Statistics, John Wiley & Sons, 1981.

    Book  Google Scholar 

  34. R Core Team R: a language and environment for statistical computing. Vienna: R foundation for statistical computing, 2019. http://www.r-project.org.

  35. Wieczorek, M., Kruse, S., Epp, L.S., et al., Dissimilar responses of larch stands in northern Siberia to increasing temperatures—a field and simulation based study, Ecology, 2017, vol. 98, no. 9, pp. 2343–2355. https://doi.org/10.1002/ecy.1887

    Article  PubMed  Google Scholar 

  36. Vasilevich, V.I., Statisticheskie metody v geobotanike (Statistical Methods in Geobotany), Leningrad: Nauka, 1969.

  37. Pozdnyakov, L.K., Merzlotnoe lesovedenie (Permafrost Forest Science), Novosibirsk: Nauka, 1986.

  38. Kavolunienė, D.K., Types of tree placement in the light of growth patterns of tree stands, in Mater. nauchn. konf. v (Proc. Sci. Conf.),, Kaunas, 1981, pp. 40–42.

  39. Tyabera, A.P., Issues of territorial distribution of trees in pine stands, Lesn. Zh., 1980, no. 5, pp. 5–7.

  40. Weiss, A.A., Horizontal structure of fir plantations, Vestn. Sib. Gos. Tekh. Univ., 2005, no. 1, pp. 24–27.

  41. Weiss, A.A., Horizontal structure of forest stands in Central Siberia, Nauchn. Zh. Kuban. Gos. Agrar. Univ., 2009. vol. 45, no. 1, pp. 1–15.

    Google Scholar 

  42. Moskvina, I.V. and Getmanets, I.A., Population organization of vegetation cover in the subzone of southern taiga forests of the Chelyabinsk region, Fundam. Res., 2014, no. 12-2, pp. 322–326.

  43. Danilina, D.M., Nazimova, D.I., and Konovalova, M.E., Spatiotemporal structure and dynamics of the late succession stage of taiga cedar pine of the Western Sayan Mountains, Contemp. Probl. Ecol., 2020, no. 5, pp. 387–398. https://doi.org/10.1134/S1995425521070064

  44. Konovalova, M.E. and Danilina, D.M., Cenopopulation structure of key species in climax siberian pine chern forests of the Western Sayan Mountains, Russ. J. Ecol., 2019, vol. 50, pp. 234–240. https://doi.org/10.1134/S1067413619030081

    Article  Google Scholar 

  45. Koltunova, A.I., On horizontal structure forming and root accreting in pine forests, Eco-potential, 2013, nos. 3–4, pp. 136–142.

  46. Manov, A.V. and Kutyavin, I.N., Horizontal structure of forest stands and new growth of northern taiga virgin blueberry-sphagnum spruce forests in Cisurals, Lesn. Zh., 2018, no. 6, pp. 78–88. https://doi.org/10.17238/issn0536-1036.2018.6.78

  47. Manov, A.V., Horizontal structure of the forest stand and undergrowth of the mixed-herb-blueberry spruce forest of the Middle taiga of the Komi Republic, Lesovedenie, 2019, no. 4, pp. 286–293. https://doi.org/10.1134/S0024114819030069

  48. Manov, A.V. and Kutyavin, I.N., Tree stand structure in an old-growth post-pyrogenic lingonberry-lichen pine forest in the Pechora River basin, Lesovedenie, 2018, no. 6, pp. 434–443. https://doi.org/10.1134/S0024114818050054

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to the administration of the United Directorate of Taimyr Nature Reserves and the Taimyr State Biosphere Reserve for organizational and logistical support during the research.

Funding

The work was carried out within project FWES–2021–0010, Scientific Basis for Preserving the Resource and Ecological Potential of Siberian Forests under Cumulative Anthropogenic and Natural Risks (Reg. NIOKTR No. 1210309001.81–4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Bondarev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The investigation does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Shulskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarev, A.I., Secretenko, O.P. Horizontal Pattern of Trees in the Cenopopulation of Larix gmelinii (Rupr.) Rupr. in the Forest Tundra Ecotone on the Taimyr Peninsula. Russ J Ecol 55, 20–31 (2024). https://doi.org/10.1134/S106741362401003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106741362401003X

Keywords:

Navigation