Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T23:58:56.668Z Has data issue: false hasContentIssue false

New momentum integral equation applicable to boundary layer flows under arbitrary pressure gradients

Published online by Cambridge University Press:  11 April 2024

Tie Wei*
Affiliation:
Department of Mechanical Engineering, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA
Zhaorui Li
Affiliation:
Department of Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
Yanxing Wang
Affiliation:
Department of Mechanical and Aerospace Engineering, New Mexico State University, 1780 E University Avenue, Las Cruces, NM 88003, USA
*
Email address for correspondence: tie.wei@nmt.edu

Abstract

By incorporating the traditionally overlooked advective term in the wall-normal momentum equation, a new momentum integral equation is developed for two-dimensional incompressible turbulent boundary layers under arbitrary pressure gradients. The classical Kármán's integral arises as a special instance of the new momentum integral equation when the pressure gradient is weak. The new momentum integral equation's validity is substantiated by direct numerical simulation data. Unlike the classical Kármán's integral, which is limited to predicting wall shear stress within mild pressure gradients, the new momentum integral equation accurately computes wall shear stress across a broad range of pressure gradients, even in the presence of strong adverse pressure gradients that lead to flow separation. Moreover, a new pressure parameter $\beta _\kappa$ is introduced through examining terms in the new momentum integral equation. This parameter naturally quantifies the pressure gradient's influence on turbulent boundary layers and offers guidance for applying the classical Kármán's integral. Additionally, to facilitate experimental determination of wall shear stress under strong pressure gradients, an approximate integral equation is proposed that relies solely on easily measurable variables. Validation against direct numerical simulation data demonstrates that this simplified equation provides reasonably accurate estimates of wall shear stress in turbulent boundary layers experiencing strong pressure gradients.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.CrossRefGoogle Scholar
Brzek, B., Cal, R.B., Johansson, G. & Castillo, L. 2007 Inner and outer scalings in rough surface zero pressure gradient turbulent boundary layers. Phys. Fluids 19 (6), 065101.CrossRefGoogle Scholar
Castillo, L. & George, W.K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21, 91108.CrossRefGoogle Scholar
Coleman, G.N., Rumsey, C.L. & Spalart, P.R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.CrossRefGoogle ScholarPubMed
Devenport, W.J. & Lowe, K.T. 2022 Equilibrium and non-equilibrium turbulent boundary layers. Prog. Aerosp. Sci. 131, 100807.CrossRefGoogle Scholar
Gruschwitz, E. 1931 Die turbulente Reibungsschicht in ebener Strömung bei Druckabfall und Druckanstiegs. Springer.CrossRefGoogle Scholar
Haritonidis, J.H. 1989 The measurement of wall shear stress. In Advances in Fluid Mechanics Measurements (ed. M. Gad-el-Hak), pp. 229–261. Springer.CrossRefGoogle Scholar
von Kármán, Th.V. 1921 Über laminare und turbulente reibung. Z. Angew. Math. Mech. 1 (4), 233252.CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.CrossRefGoogle Scholar
Kundu, P.K., Cohen, I.M. & Dowling, D.R. 2012 Fluid Mechanics. Academic.Google Scholar
Ligrani, P.M. & Moffat, R.J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.CrossRefGoogle Scholar
Maciel, Y., Wei, T., Gungor, A.G. & Simens, M.P. 2018 Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 844, 535.CrossRefGoogle Scholar
Mehdi, F., Johansson, T.G., White, C.M. & Naughton, J.W. 2014 On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp. Fluids 55, 19.CrossRefGoogle Scholar
Mellor, G.L. 1966 The effects of pressure gradients on turbulent flow near a smooth wall. J. Fluid Mech. 24 (2), 255274.CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24 (2), 225253.CrossRefGoogle Scholar
Naughton, J.W. & Sheplak, M. 2002 Modern developments in shear-stress measurement. Prog. Aerosp. Sci. 38 (6–7), 515570.CrossRefGoogle Scholar
Pohlhausen, K. 1921 Zur näherungsweisen integration der differentialgleichung der iaminaren grenzschicht. Z. Angew. Math. Mech. 1 (4), 252290.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rotta, J. 1950 Über die Theorie turbulenter Grenzschichten. Tech. Rep. NACA-TM-1344. Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung Nr. 1. (Translated as: On the theory of turbulent boundary layers. NACA Technical Memorandum No. 1344, 1953.).Google Scholar
Rotta, J.C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2 (1), 195.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.Google Scholar
Skote, M., Henningson, D.S. & Henkes, R.A.W.M. 1998 Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients. Flow Turbul. Combust. 60 (1), 4785.CrossRefGoogle Scholar
Stratford, B.S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5 (1), 116.CrossRefGoogle Scholar
Subrahmanyam, M.A., Cantwell, B.J. & Alonso, J.J. 2022 A universal velocity profile for turbulent wall flows including adverse pressure gradient boundary layers. J. Fluid Mech. 933, A16.CrossRefGoogle Scholar
Tavoularis, S. 2005 Measurement in Fluid Mechanics. Cambridge University Press.Google Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Townsend, A.A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Volino, R.J. & Schultz, M.P. 2018 Determination of wall shear stress from mean velocity and Reynolds shear stress profiles. Phys. Rev. Fluids 3 (3), 034606.CrossRefGoogle Scholar
Wei, T. & Klewicki, J. 2016 Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers. Phys. Rev. Fluids 1 (8), 082401.CrossRefGoogle Scholar
Wei, T. & Klewicki, J. 2023 Integral relation in zero-pressure-gradient boundary layer flows. Phys. Rev. Fluids 8, 124601.CrossRefGoogle Scholar
Wei, T., Li, Z., Knopp, T. & Vinuesa, R. 2023 The mean wall-normal velocity in turbulent-boundary-layer flows under pressure gradient. J. Fluid Mech. 975, A27.CrossRefGoogle Scholar
Winter, K.G. 1979 An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Prog. Aerosp. Sci. 18, 157.CrossRefGoogle Scholar