Skip to main content
Log in

Progressive changes in the protein expression profile of alveolar septa in early-stage lung adenocarcinoma

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Adenocarcinomas show a stepwise progression from atypical adenomatous hyperplasia (AAH) through adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IA). Immunoglobulin superfamily containing leucine-rich repeat (ISLR) is a marker of tumor-restraining cancer-associated fibroblasts (CAFs), which are distinct from conventional, strongly α-smooth muscle actin (αSMA)-positive CAFs. Fibroblast activation protein (FAP) has been focused on as a potential therapeutic and diagnostic target of CAFs.

Methods

We investigated the changes in protein expression during adenocarcinoma progression in the pre-existing alveolar septa by assessing ISLR, αSMA, and FAP expression in normal lung, AAH, AIS, and IA. Fourteen AAH, seventeen AIS, and twenty IA lesions were identified and randomly sampled. Immunohistochemical analysis was performed to evaluate cancer-associated changes and FAP expression in the pre-existing alveolar structures.

Results

Normal alveolar septa expressed ISLR. The ISLR level in the alveolar septa decreased in AAH and AIS tissues when compared with that in normal lung tissue. The αSMA-positive area gradually increased from the adjacent lung tissue (13.3% ± 15%) to AIS (87.7% ± 14%), through AAH (70.2% ± 21%). Moreover, the FAP-positive area gradually increased from AAH (1.69% ± 1.4%) to IA (11.8% ± 7.1%), through AIS (6.11% ± 5.3%). Protein expression changes are a feature of CAFs in the pre-existing alveolar septa that begin in AAH. These changes gradually progressed from AAH to IA through AIS.

Conclusions

FAP-positive fibroblasts may contribute to tumor stroma formation in early-stage lung adenocarcinoma, and this could influence the development of therapeutic strategies targeting FAP-positive CAFs for disrupting extracellular matrix formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All relevant data are presented in the manuscript.

References

  1. Succony L, Rassl DM, Barker AP et al (2021) Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies. Cancer Treat Rev 99:102237

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2021). Thoracic tumours, WHO classification of Tumours, 5th Edition, Volume 5. International Agency for Research on Cancer

  3. Noguchi M (2010) Stepwise progression of pulmonary adenocarcinoma-clinical and molecular implications. Cancer Metastasis Rev 29:15–21

    Article  PubMed  Google Scholar 

  4. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 18:792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maeda K, Enomoto A, Hara A et al (2016) Identification of Meflin as a potential marker for mesenchymal stromal cells. Sci Rep 6:22288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi H, Gieniec KA, Wright JA (2021) The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology 160:1224-1239.e30

    Article  CAS  PubMed  Google Scholar 

  9. Mizutani Y, Kobayashi H, Iida T et al (2019) Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res 79:5367–5381

    Article  CAS  PubMed  Google Scholar 

  10. Miyai Y, Sugiyama D, Hase T et al (2022) Meflin-positive cancer-associated fibroblasts enhance tumor response to immune checkpoint blockade. Life Sci Alliance 5:e202101230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  12. Avery D, Govindaraju P, Jacob M et al (2018) Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biol 67:90–106

    Article  CAS  PubMed  Google Scholar 

  13. Öhlund D, Handly-Santana A, Biffi G et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214:579–596

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mathew S, Scanlan MJ, Mohan Raj BK et al (1995) The gene for fibroblast activation protein α (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics 25:335–337

    Article  CAS  PubMed  Google Scholar 

  15. Kimura T, Monslow J, Klampatsa A et al (2019) Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-β and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol 317:L271–L282

    Article  CAS  PubMed  Google Scholar 

  16. Puré E, Blomberg R (2018) Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37:4343–4357

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fitzgerald AA, Weiner LM (2020) The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev 39:783–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moreno-Ruiz P, Corvigno S, te Grootenhuis NC et al (2021) Stromal FAP is an independent poor prognosis marker in non-small cell lung adenocarcinoma and associated with p53 mutation. Lung Cancer 155:10–19

    Article  CAS  PubMed  Google Scholar 

  19. Liao Y, Ni Y, He R et al (2013) Clinical implications of fibroblast activation protein-α in non-small cell lung cancer after curative resection: a new predictor for prognosis. J Cancer Res Clin Oncol 139:1523–1528

    Article  CAS  PubMed  Google Scholar 

  20. Min KW, Kim DH, Noh YK et al (2021) Cancer-associated fibroblasts are associated with poor prognosis in solid type of lung adenocarcinoma in a machine learning analysis. Sci Rep 11:16779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pellinen T, Paavolainen L, Martín-Bernabé A et al (2023) Fibroblast subsets in non-small cell lung cancer: associations with survival, mutations, and immune features. J Natl Cancer Inst 115:71–82

    Article  CAS  PubMed  Google Scholar 

  22. Privé BM, Boussihmad MA, Timmermans B et al (2023) Fibroblast activation protein-targeted radionuclide therapy: background, opportunities, and challenges of first (pre)clinical studies. Eur J Nucl Med Mol Imaging 50:1906–1918

    Article  PubMed  PubMed Central  Google Scholar 

  23. Windisch P, Zwahlen DR, Giesel FL et al (2021) Clinical results of fibroblast activation protein (FAP) specific PET for non-malignant indications: systematic review. EJNMMI Res 11:18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giesel FL, Adeberg S, Syed M et al (2021) FAPI-74 PET/CT using either 18F-AlF or cold-kit 68Ga labeling: biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients. J Nucl Med 62:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lo A, Wang LS, Scholler J et al (2015) Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res 75:2800–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang LCS, Lo A, Scholler J et al (2014) Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res 2:154–166

    Article  CAS  PubMed  Google Scholar 

  27. Aghajanian H, Kimura T, Rurik JG et al (2019) Targeting cardiac fibrosis with engineered T cells. Nature 573:430–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kostrikov S, Johnsen KB, Braunstein TH et al (2021) Optical tissue clearing and machine learning can precisely characterize extravasation and blood vessel architecture in brain tumors. Commun Biol 4:815

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  PubMed  Google Scholar 

  30. Nurmik M, Ullmann P, Rodriguez F et al (2020) In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer 146:895–905

    Article  CAS  PubMed  Google Scholar 

  31. Sivakumar S, San Lucas FA, McDowell TL et al (2017) Genomic landscape of atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma. Cancer Res 77:6119–6130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Acharya PS, Zukas A, Chandan V et al (2006) Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 37:352–360

    Article  CAS  PubMed  Google Scholar 

  33. Yotsukura M, Asamura H, Suzuki S et al (2020) Prognostic impact of cancer-associated active fibroblasts and invasive architectural patterns on early-stage lung adenocarcinoma. Lung Cancer 145:158–166

    Article  PubMed  Google Scholar 

  34. Lavie D, Ben-Shmuel A, Erez N et al (2022) Cancer-associated fibroblasts in the single-cell era. Nat Cancer 3:793–807

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fan MH, Zhu Q, Li HH et al (2016) Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J Biol Chem 291:8070–8089

    Article  CAS  PubMed  Google Scholar 

  36. Zhang HE, Hamson EJ, Koczorowska MM et al (2019) Identification of novel natural substrates of fibroblast activation protein-alpha by differential degradomics and proteomics. Mol Cell Proteomics 18:65–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This research was supported by JSPS KAKENHI [Grant number JP19K09314].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Toru Kimura, Takashi Akazawa, Yu Mizote, Harumi Nakamura, Miki Sakaue, Tomohiro Maniwa, Yasushi Shintani, Keiichiro Honma, Hideaki Tahara, and Jiro Okami carried out material preparation, and data collection and analysis. Toru Kimura wrote the first draft of the manuscript, and all authors commented on previous versions. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Toru Kimura.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. The study was approved by the Institutional Review Board of the Osaka International Cancer Institute (June 12, 2019. Approval No. 19050). Written informed consent was obtained from all patients.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2787 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Akazawa, T., Mizote, Y. et al. Progressive changes in the protein expression profile of alveolar septa in early-stage lung adenocarcinoma. Int J Clin Oncol (2024). https://doi.org/10.1007/s10147-024-02507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10147-024-02507-1

Keywords

Navigation