Skip to main content
Log in

Polyaniline doping induced abundant active sites in orange peel as an efficient adsorbent material for water treatment

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The study of the physicochemical properties of water and the removal of water contaminants using an active adsorbent material is a vital approach today. The purpose of this study is to modify orange peel (OP) using polyaniline (PANI) via in situ oxidative polymerization method and characterize it for wastewater treatment applications. The properties of water were analyzed according to the standard guideline published by APH before the adsorption study. The proposed materials were characterized by SEM, FTIR, and UV–VIS spectroscopy. The modification of orange peel using polyaniline was confirmed by electronic transition and stretching vibration peaks obtained from FT-IR and UV–Vis spectroscopies and its morphologies from SEM. The results of most of the physicochemical properties, nutrients, and heavy metals were above the acceptable range for wastewater discharge limits set by FAO, WHO, and EEPA. The Cu and Zn adsorption performance of as-synthesized materials was studied and depicted a high adsorption capacity for copper (176.9 mg/g) and zinc (151.3 mg/g) in wastewater solutions. When all parameters were optimized (pH at 6, contact time at 40 min, temperature at 300 K, and 1 gr of PANI-OP), 90.03% removal of copper and 85% (pH at 4, contact time at 60 min, temperature at 300 K, and 1 gr of PANI-OP) removal of zinc were observed. The adsorption equilibriums of both copper and zinc were best described by the Freundlich isotherm model. Therefore, the synthesized novel material PANI-OP is a promising candidate for the removal of Cu and Zn from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Materials are available for all.

Code availability

Not applicable.

References

  1. Lin L, Yang H, Xu X (2022) Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front Environ Sci 10 https://doi.org/10.3389/fenvs.2022.880246

  2. Hama Aziz, K.H., et al.: Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv. 13, 17595–17610 (2023). https://doi.org/10.1039/d3ra00723e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajasulochana, P., Preethy, V.: Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resour Technol 2, 175–184 (2016). https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  4. Ali, I., Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protoc. 1, 2661–2667 (2007). https://doi.org/10.1038/nprot.2006.370

    Article  CAS  Google Scholar 

  5. Bhatnagar, A., Sillanpää, M.: Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem Eng J 157, 277–296 (2010). https://doi.org/10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  6. Lee, B.G., Rowell, R.M.: Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. J Nat Fibers 1, 97–108 (2004). https://doi.org/10.1300/J395v01n01_07

    Article  CAS  Google Scholar 

  7. Michael-Igolima, U., Abbey, S.J., Ifelebuegu, A.O., Eyo, E.U.: Modified Orange Peel Waste as a Sustainable Material for Adsorption of Contaminants. Mater 16, 1092 (2023). https://doi.org/10.3390/ma16031092

    Article  CAS  Google Scholar 

  8. Liu L et al. (2021) Adsorption Performance of La(III) and Y(III) on Orange Peel: Impact of Experimental Variables, Isotherms, and Kinetics. Adsorpt Sci Technol 2021 https://doi.org/10.1155/2021/7189639

  9. Hasan, M.B., Al-Tameemi, I.M., Abbas, M.N.: Orange Peels as a Sustainable Material for Treating Water Polluted with Antimony. J Ecol Eng 22, 25–35 (2021). https://doi.org/10.12911/22998993/130632

    Article  Google Scholar 

  10. Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q., Zheng, S.: Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151, 19–29 (2009). https://doi.org/10.1016/j.cej.2009.02.036

    Article  CAS  Google Scholar 

  11. Sajid, M., Nazal, M.K., Baig, N., Osman, A.M.: Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Sep Purif Technol 191, 400–423 (2018). https://doi.org/10.1016/j.seppur.2017.09.011

    Article  CAS  Google Scholar 

  12. Taghizadeh, A., et al.: Conductive polymers in water treatment: A review. J. Mol. Liq. 312, 113447 (2020). https://doi.org/10.1016/j.molliq.2020.113447

    Article  CAS  Google Scholar 

  13. Khashij, M., Moheb, A., Mehralian, M., Gharloghi, M.: Modeling of the adsorption breakthrough behaviors of 4-chlorophenol in a fixed bed of nano graphene oxide adsorbent. J Water Supply Res Technol 65, 2–8 (2016)

    Article  Google Scholar 

  14. Tan, I.A.W., Ahmad, A.L., Hameed, B.H.: Fixed-bed adsorption performance of oil palm shell-based activated carbon for removal of 2,4,6-trichlorophenol. Bioresour. Technol. 100, 1494–1496 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Teklu T et al. (2020a) Polyaniline Deposition on the Surface of Cotton Fibers : Structural Studies , Swelling Behavior , and Water Absorption Properties. 2020

  16. Teklu T et al. (2020b) Polyaniline Deposition on the Surface of Cotton Fibers: Structural Studies, Swelling Behavior, and Water Absorption Properties. Adv Mater Sci Eng 2020 https://doi.org/10.1155/2020/1650364

  17. Teklu, T., Wangatia, L.M., Alemayehu, E.: In situ deposition of polyaniline onto sisal fibers and removal efficiency for chromium ( VI ) from aqueous solution: Structure and adsorption studies. J Appl Surfaces Interfaces 3, 1–9 (2018). https://doi.org/10.48442/IMIST.PRSM/jasi-v3i1-3.11304

    Article  Google Scholar 

  18. Khalil, A., Salem, M., Ragab, S., Sillanpää, M., El Nemr, A.: Orange peels magnetic activate carbon (MG-OPAC) composite formation for toxic chromium absorption from wastewater. Sci. Rep. 13, 1–17 (2023). https://doi.org/10.1038/s41598-023-30161-6

    Article  CAS  Google Scholar 

  19. Jadoun, S., Fuentes, J.P., Urbano, B.F., Yáñez, J.: A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. J. Environ. Chem. Eng. 11, 109212–109226 (2023). https://doi.org/10.1016/j.jece.2022.109226

    Article  CAS  Google Scholar 

  20. Samadi, A., Xie, M., Li, J., Shon, H., Zheng, C., Zhao, S.: Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chem Eng J 418, 129413–129425 (2021). https://doi.org/10.1016/j.cej.2021.129425

    Article  CAS  Google Scholar 

  21. Buonomenna, M.G., Mousavi, S.M., Hashemi, S.A., Lai, C.W.: Water Cleaning Adsorptive Membranes for Efficient Removal of Heavy Metals and Metalloids. Water 14, 2710–2718 (2022). https://doi.org/10.3390/w14172718

    Article  CAS  Google Scholar 

  22. Shimizu, S., Matubayasi, N.: Understanding sorption mechanism directly from Isotherms. Langumer 39, 6113–6125 (2023). https://doi.org/10.1021/acs.langumuir.3c00256

    Article  CAS  Google Scholar 

  23. Kalaichelvi, K., Dhivya, S.M.: Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L) Benth. Int J Herb Med 5, 40–44 (2017)

    Google Scholar 

  24. Jonas Wolfs, F., Scheelje, C.M., Matveyeva, O., Meier, M.A.R.: Determination of the degree of substitution of cellulose esters via ATR-FTIR spectroscopy. J. Polym. Sci. 6, 152–165 (2023). https://doi.org/10.1002/pol.20230220

  25. Oh, S.Y., Yoo, D.I., Shin, Y., Seo, G.: FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340, 417–428 (2005). https://doi.org/10.1016/j.carres.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  26. Ozuomba, J.O.: Synthesis and Characterization of Acid-Doped Polyaniline Thin Films. Niger. J. Technol. 37, 135–138 (2018). https://doi.org/10.4314/njt.v37i1.18

    Article  Google Scholar 

  27. Israel, L.L., et al.: Insights into the Electrochemical Behavior and Kinetics of NiP@PANI/ rGO as a High-Performance Electrode for Alkaline Urea Oxidation. Electrocatalysis 13, 1–16 (2022). https://doi.org/10.1007/s12678-022-00718-6

    Article  CAS  Google Scholar 

  28. Akinhanmi, T.F., Ofudje, E.A., Adeogun, A.I., Aina, P., Joseph, I.M.: Orange peel as low - cost adsorbent in the elimination of Cd ( II ) ion : kinetics, isotherm, thermodynamic and optimization evaluations. Bioresour Bioprocess (2020). https://doi.org/10.1186/s40643-020-00320-y

    Article  Google Scholar 

  29. Mafra, M.R., Igarashi-Mafra, L., Zuim, D.R., Vasques, É.C., Ferreira, M.A.: Adsorption of remazol brilliant blue on an orange peel adsorbent. Brazilian J Chem Eng 30, 657–665 (2013). https://doi.org/10.1590/S0104-66322013000300022

    Article  CAS  Google Scholar 

  30. Ambalagi, S.M., Devendrappa, M., Nagaraja, S., Sannakki, B.: Dielectric Properties of PANI/CuO Nanocomposites. IOP Conf Ser Mater Sci Eng 310, 012081 (2018). https://doi.org/10.1088/1757-899X/310/1/012081

    Article  Google Scholar 

  31. Razalli, R.L., et al.: Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: Preparation and characterization. RSC Adv. 7, 25191–25198 (2017). https://doi.org/10.1039/c7ra03379f

    Article  CAS  Google Scholar 

  32. Charity Eboagu, N., Ishmael EgbulefuAjiwe, V., ChukwuemekaAralu, C., EkwyOchiagha, K., Joy Morah, E.: Assessment of Physicochemical Parameters of Water from Selected Boreholes Around Nnewi Industrial Area, Anambra State, Nigeria. Am J Environ Sci Eng 7, 23–33 (2023). https://doi.org/10.11648/j.ajese.20230701.14

    Article  Google Scholar 

  33. Protection TE, United T, Industrial N (2003) AMBIENT ENVIRONMENT STANDARDS FOR environmental protection.

  34. Khuhawar, M.Y., Mirza, M.A., Leghari, S.M., Arain, R.: Limnological study of baghsar lake district. Pak. J. Bot. 41, 1903–1915 (2009)

    CAS  Google Scholar 

  35. Lianthuamluaia, Landge A. T., Purushothamen CS, Deshmukha G. RKK (2013) Assessment of Seasonal Variations of Water Quality Parameters of Savitri Reservoir, Poladpur, Raigad District, Maharashtra. Krish 8:1337–1342. https://krishi.icar.gov.in/jspui/handle/123456789/53284

  36. Fitriani, N., Wahyudianto, F.E., Salsabila, N.F., Mohamed, R.M., Kurniawan, S.B.: Performance of modified slow sand filter to reduce turbidity, total suspended solids and iron in river water as water treatment i disaster areas. J Ecol Eng 24, 1–18 (2023). https://doi.org/10.12911/22998993/156009

    Article  Google Scholar 

  37. Moklesur Rahman, M., Haque, T., Azhar Mahmud, M.A.A.: Drinking water quality assessment based on index values incorporating WHO guidelines and Bangladesh standards. Phys. Chem. Earth Parts A/B/C. 129, 103353 (2023). https://doi.org/10.1016/j.pce.2022.103353

  38. Guo, X., Shuzhen Zhang, X.S.: Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134–142 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.065

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, N., Yiting, Xu., Dai, Y., Weiang Luo, L.D.: Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake. J. Hazard. Mater. 215, 17–24 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  40. Ghorbani, M., Eisazadeh, H., Ghoreyshi, A.A., Engineering, C., Box, P.O.: Removal of Zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk. Iran. J. Energy Environ. 3(1), 66–71 (2012). https://doi.org/10.5829/idosi.ijee.2012.03.01.3343

    Article  CAS  Google Scholar 

  41. Kanwal, F., Batool, A., Rasool, S., Naseem, S., Rehman, R.: Synthesis of polyaniline composites with grinded leaves of Polyalthia longifolia, Syzygium cumini, Alstonia scholaris and Madhuca longifolia and study of their structural, electrical and dielectric properties. Asian J. Chem. 26, 7519–7522 (2014). https://doi.org/10.14233/ajchem.2014.16649

    Article  CAS  Google Scholar 

  42. Kanwal, F., Rehman, R., Samson, S., Anwar, J.: Isothermal investigation of Copper(II) and Nickel(II) adsorption from water by novel synthesized polyaniline composites with Polyalthia longifolia and Alastonia scholaris dried leaves. Asian J. Chem. 25, 9013–9019 (2013). https://doi.org/10.14233/ajchem.2013.14968

    Article  CAS  Google Scholar 

  43. Karthikeyan, G., Andal, N.M.: Adsorption studies of iron(III) on chitin. J Chem Sci 117, 663–672 (2005). https://doi.org/10.1007/BF02708296

    Article  CAS  Google Scholar 

  44. Özacar, M., Şengil, İA.: Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96, 791–795 (2005). https://doi.org/10.1016/j.biortech.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  45. Padmavathy, K.S., Madhu, G., Haseena, P.V.: A study on Effects of pH, Adsorbent Dosage, Time, Initial Concentration and Adsorption Isotherm Study for the Removal of Hexavalent Chromium (Cr (VI)) from Wastewater by Magnetite Nanoparticles. Procedia Technol 24, 585–594 (2016). https://doi.org/10.1016/j.protcy.2016.05.127

    Article  Google Scholar 

  46. Chen, X., Hossain, M.F., Duan, C., Lu, J., Tsang, Y.F., Islam, M.S., Zhou, Y.: Isotherm models for adsorption of heavy metals from water - A review. Chemosphere 307, 135535–135545 (2022). https://doi.org/10.1016/j.chemosphere.2022.135545

    Article  CAS  Google Scholar 

  47. Mohammad, A., Al-Ghouti, D.A.D.: Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 393, 122374–122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  Google Scholar 

  48. Kanwal F, Rehman R, Anwar J, Saeed M (2012) Batchwise Removal of Chromium ( VI ) by Adsorption on Novel Synthesized Polyaniline Composites with Various Brans and Isothermal Modeling of Equilibrium Data. JChemSocPak 34:1134–1139. https://www.researchgate.net/232746313

  49. Khan, M.A., Otero, M., Kazi, M., Alqadami, A.A., Wabaidur, S.M., Siddiqui, M.R., Alothman, Z.A., Sumbul, S.: Unary and binary adsorption studies of lead and malachite green onto a nanomagnetic copper ferrite/drumstick pod biomass composite. J. Hazard. Mater. 365, 759–770 (2019)

    Article  CAS  PubMed  Google Scholar 

  50. Teklu, T., Wangatia, L.M., Alemayehu, E.: Removal of Pb(II) from aqueous media using adsorption onto polyaniline coated sisal fibers. J. Vinyl. Addit. Technol. 25, 189–197 (2019). https://doi.org/10.1002/vnl.21652

    Article  CAS  Google Scholar 

  51. Gupta, V.K., Ganjali, M.R., Nayak, A., Bhushan, B., Agarwal, S.: Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chem. Eng. J. 197, 330–342 (2012). https://doi.org/10.1016/j.cej.2012.04.104

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for supporting this research work with fund by Wolkite University, Ethiopia. All the laboratory activity were carried out at Wolkite University, Zebidar brewery S.C and Addis Ababa University, Arat kilo campus, Ethiopia.

Author information

Authors and Affiliations

Authors

Contributions

Israel Leka: conceptualization, methodology, investigation, writing-original draft, writing-review and editing, validation, project administration Sutripto Khanshi: Resources, validation, editing, facilitating Lodrick Wangatia: data curation, supervision, project administration, Femi Olu: data curation, supervision Praveen C. Ramamurthy: Supervision, validation, Resources, material funding acquisition.

Corresponding author

Correspondence to Israel Leka Lera.

Ethics declarations

Ethics approval

No ethics problem.

Consent to participate

Participate at all processes.

Consent for publication

Participate at all processes.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diro, S.T., Bahru, T.B. & Lera, I.L. Polyaniline doping induced abundant active sites in orange peel as an efficient adsorbent material for water treatment. Adsorption (2024). https://doi.org/10.1007/s10450-024-00466-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00466-7

Keywords

Navigation