Semin Respir Crit Care Med 2024; 45(02): 169-186
DOI: 10.1055/s-0043-1778140
Review Article

Severe Community-Acquired Pneumonia: Noninvasive Mechanical Ventilation, Intubation, and HFNT

Miquel Ferrer
1   Unitat de Vigilancia Intensiva Respiratoria, Servei de Pneumologia, Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
2   Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
3   Centro de Investigacion Biomedica En Red-Enfermedades Respiratorias (CIBERES-CB060628), Barcelona, Spain
,
Gennaro De Pascale
4   Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
5   Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
,
Eloisa S. Tanzarella
4   Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
5   Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
,
Massimo Antonelli
4   Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
5   Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
› Author Affiliations

Abstract

Severe acute respiratory failure (ARF) is a major issue in patients with severe community-acquired pneumonia (CAP). Standard oxygen therapy is the first-line therapy for ARF in the less severe cases. However, respiratory supports may be delivered in more severe clinical condition. In cases with life-threatening ARF, invasive mechanical ventilation (IMV) will be required. Noninvasive strategies such as high-flow nasal therapy (HFNT) or noninvasive ventilation (NIV) by either face mask or helmet might cover the gap between standard oxygen and IMV. The objective of all the supporting measures for ARF is to gain time for the antimicrobial treatment to cure the pneumonia. There is uncertainty regarding which patients with severe CAP are most likely to benefit from each noninvasive support strategy. HFNT may be the first-line approach in the majority of patients. While NIV may be relatively contraindicated in patients with excessive secretions, facial hair/structure resulting in air leaks or poor compliance, NIV may be preferable in those with increased work of breathing, respiratory muscle fatigue, and congestive heart failure, in which the positive pressure of NIV may positively impact hemodynamics. A trial of NIV might be considered for select patients with hypoxemic ARF if there are no contraindications, with close monitoring by an experienced clinical team who can intubate patients promptly if they deteriorate. In such cases, individual clinician judgement is key to choose NIV, interface, and settings. Due to the paucity of studies addressing IMV in this population, the protective mechanical ventilation strategies recommended by guidelines for acute respiratory distress syndrome can be reasonably applied in patients with severe CAP.



Publication History

Article published online:
11 April 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Restrepo MI, Anzueto A. Severe community-acquired pneumonia. Infect Dis Clin North Am 2009; 23 (03) 503-520
  • 2 Oosterheert JJM, Bonten MJ, Hak E, Schneider MM, Hoepelman AI. Severe community-acquired pneumonia: what's in a name?. Curr Opin Infect Dis 2003; 16 (02) 153-159
  • 3 Ewig S, Woodhead M, Torres A. Towards a sensible comprehension of severe community-acquired pneumonia. Intensive Care Med 2011; 37 (02) 214-223
  • 4 Mandell LA, Wunderink RG, Anzueto A. et al; Infectious Diseases Society of America, American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 (Suppl. 02) S27-S72
  • 5 Metlay JP, Waterer GW, Long AC. et al. Diagnosis and treatment of adults with community-acquired pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (07) e45-e67
  • 6 Gea J, Roca J, Torres A, Agustí AG, Wagner PD, Rodriguez-Roisin R. Mechanisms of abnormal gas exchange in patients with pneumonia. Anesthesiology 1991; 75 (05) 782-789
  • 7 Mélot C. Contribution of multiple inert gas elimination technique to pulmonary medicine. 5. Ventilation-perfusion relationships in acute respiratory failure. Thorax 1994; 49 (12) 1251-1258
  • 8 Graham LM, Vasil A, Vasil ML, Voelkel NF, Stenmark KR. Decreased pulmonary vasoreactivity in an animal model of chronic Pseudomonas pneumonia. Am Rev Respir Dis 1990; 142 (01) 221-229
  • 9 Light RB, Mink SN, Wood LD. Pathophysiology of gas exchange and pulmonary perfusion in pneumococcal lobar pneumonia in dogs. J Appl Physiol 1981; 50 (03) 524-530
  • 10 Waterer G. Severity scores and community-acquired pneumonia. Time to move forward. Am J Respir Crit Care Med 2017; 196 (10) 1236-1238
  • 11 Ramos JGR, Ranzani OT, Perondi B. et al. A decision-aid tool for ICU admission triage is associated with a reduction in potentially inappropriate intensive care unit admissions. J Crit Care 2019; 51: 77-83
  • 12 Chalmers JD, Mandal P, Singanayagam A. et al. Severity assessment tools to guide ICU admission in community-acquired pneumonia: systematic review and meta-analysis. Intensive Care Med 2011; 37 (09) 1409-1420
  • 13 Waterer GW, Self WH, Courtney DM. et al. In-hospital deaths among adults with community-acquired pneumonia. Chest 2018; 154 (03) 628-635
  • 14 Ranzani OT, Prina E, Menéndez R. et al. New Sepsis Definition (Sepsis-3) and community-acquired pneumonia mortality. A validation and clinical decision-making study. Am J Respir Crit Care Med 2017; 196 (10) 1287-1297
  • 15 Salih W, Schembri S, Chalmers JD. Simplification of the IDSA/ATS criteria for severe CAP using meta-analysis and observational data. Eur Respir J 2014; 43 (03) 842-851
  • 16 Torres A, Ranzani OT, Ferrer M. Pneumonia in 2016: towards better care. Lancet Respir Med 2016; 4 (12) 949-951
  • 17 De Pascale G, Bello G, Tumbarello M, Antonelli M. Severe pneumonia in intensive care: cause, diagnosis, treatment and management: a review of the literature. Curr Opin Pulm Med 2012; 18 (03) 213-221
  • 18 Pierson DJ. Indications for mechanical ventilation in adults with acute respiratory failure. Respir Care 2002; 47 (03) 249-262 , discussion 262–265
  • 19 Ferrer M, Travierso C, Cilloniz C. et al. Severe community-acquired pneumonia: Characteristics and prognostic factors in ventilated and non-ventilated patients. PLoS ONE 2018; 13 (01) e0191721
  • 20 Bello G, Ionescu Maddalena A, Giammatteo V, Antonelli M. Noninvasive options. Crit Care Clin 2018; 34 (03) 395-412
  • 21 Bellani G, Laffey JG, Pham T. et al; LUNG SAFE Investigators, ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315 (08) 788-800
  • 22 García-de-Acilu M, Patel BK, Roca O. Noninvasive approach for de novo acute hypoxemic respiratory failure: noninvasive ventilation, high-flow nasal cannula, both or none?. Curr Opin Crit Care 2019; 25 (01) 54-62
  • 23 Matthay MA, Thompson BT, Ware LB. The Berlin definition of acute respiratory distress syndrome: should patients receiving high-flow nasal oxygen be included?. Lancet Respir Med 2021; 9 (08) 933-936
  • 24 Rochwerg B, Brochard L, Elliott MW. et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50 (02) 1602426
  • 25 Davidson AC, Banham S, Elliott M. et al; BTS Standards of Care Committee Member, British Thoracic Society/Intensive Care Society Acute Hypercapnic Respiratory Failure Guideline Development Group, On behalf of the British Thoracic Society Standards of Care Committee. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax 2016; 71 (Suppl. 02) ii1-ii35
  • 26 Tiruvoipati R, Pilcher D, Buscher H, Botha J, Bailey M. Effects of hypercapnia and hypercapnic acidosis on hospital mortality in mechanically ventilated patients. Crit Care Med 2017; 45 (07) e649-e656
  • 27 Roberts CM, Stone RA, Buckingham RJ, Pursey NA, Lowe D. National Chronic Obstructive Pulmonary Disease Resources and Outcomes Project Implementation Group. Acidosis, non-invasive ventilation and mortality in hospitalised COPD exacerbations. Thorax 2011; 66 (01) 43-48
  • 28 Papazian L, Corley A, Hess D. et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med 2016; 42 (09) 1336-1349
  • 29 Mauri T, Turrini C, Eronia N. et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2017; 195 (09) 1207-1215
  • 30 Biselli P, Fricke K, Grote L. et al. Reductions in dead space ventilation with nasal high flow depend on physiological dead space volume: metabolic hood measurements during sleep in patients with COPD and controls. Eur Respir J 2018; 51 (05) 1702251
  • 31 Mauri T, Alban L, Turrini C. et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med 2017; 43 (10) 1453-1463
  • 32 Mauri T, Galazzi A, Binda F. et al. Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula. Crit Care 2018; 22 (01) 120
  • 33 Gilardi E, Petrucci M, Sabia L, Wolde Sellasie K, Grieco DL, Pennisi MA. High-flow nasal cannula for body rewarming in hypothermia. Crit Care 2020; 24 (01) 122
  • 34 Chidekel A, Zhu Y, Wang J, Mosko JJ, Rodriguez E, Shaffer TH. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells. Pulm Med 2012; 2012: 380686
  • 35 Cortegiani A, Crimi C, Noto A. et al. Effect of high-flow nasal therapy on dyspnea, comfort, and respiratory rate. Crit Care 2019; 23 (01) 201
  • 36 Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 2020; 46 (04) 606-618
  • 37 Parke RL, Bloch A, McGuinness SP. Effect of very-high-flow nasal therapy on airway pressure and end-expiratory lung impedance in healthy volunteers. Respir Care 2015; 60 (10) 1397-1403
  • 38 Renda T, Corrado A, Iskandar G, Pelaia G, Abdalla K, Navalesi P. High-flow nasal oxygen therapy in intensive care and anaesthesia. Br J Anaesth 2018; 120 (01) 18-27
  • 39 Azoulay E, Pickkers P, Soares M. et al; Efraim investigators and the Nine-I study group. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study. Intensive Care Med 2017; 43 (12) 1808-1819
  • 40 Frat J-P, Coudroy R, Marjanovic N, Thille AW. High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure. Ann Transl Med 2017; 5 (14) 297
  • 41 Barrot L, Asfar P, Mauny F. et al; LOCO2 Investigators and REVA Research Network. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med 2020; 382 (11) 999-1008
  • 42 Frat JP, Thille AW, Mercat A. et al; FLORALI Study Group, REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372 (23) 2185-2196
  • 43 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 44 Matthay MA. Saving lives with high-flow nasal oxygen. N Engl J Med 2015; 372 (23) 2225-2226
  • 45 Frat JP, Ragot S, Girault C. et al; REVA network. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. Lancet Respir Med 2016; 4 (08) 646-652
  • 46 Coudroy R, Frat J-P, Ehrmann S. et al; FLORALI-IM study group and the REVA Research Network. High-flow nasal oxygen alone or alternating with non-invasive ventilation in critically ill immunocompromised patients with acute respiratory failure: a randomised controlled trial. Lancet Respir Med 2022; 10 (07) 641-649
  • 47 Lemiale V, Mokart D, Mayaux J. et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care 2015; 19: 380
  • 48 Azoulay E, Lemiale V, Mokart D. et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: The HIGH Randomized Clinical Trial. JAMA 2018; 320 (20) 2099-2107
  • 49 Grasselli G, Calfee CS, Camporota L. et al; European Society of Intensive Care Medicine Taskforce on ARDS. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49 (07) 727-759
  • 50 Bello G, De Pascale G, Antonelli M. Noninvasive ventilation: practical advice. Curr Opin Crit Care 2013; 19 (01) 1-8
  • 51 Cesarano M, Grieco DL, Michi T. et al. Helmet noninvasive support for acute hypoxemic respiratory failure: rationale, mechanism of action and bedside application. Ann Intensive Care 2022; 12 (01) 94
  • 52 Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet 2009; 374 (9685) 250-259
  • 53 Patroniti N, Foti G, Manfio A, Coppo A, Bellani G, Pesenti A. Head helmet versus face mask for non-invasive continuous positive airway pressure: a physiological study. Intensive Care Med 2003; 29 (10) 1680-1687
  • 54 Grieco DL, Biancone M, Maviglia R, Antonelli M. A new strategy to deliver helmet CPAP to critically ill patients: the possible role of ICU ventilators. Minerva Anestesiol 2015; 81 (10) 1144-1145
  • 55 Antonelli M, Conti G, Pelosi P. et al. New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet–a pilot controlled trial. Crit Care Med 2002; 30 (03) 602-608
  • 56 Taccone P, Hess D, Caironi P, Bigatello LM. Continuous positive airway pressure delivered with a “helmet”: effects on carbon dioxide rebreathing. Crit Care Med 2004; 32 (10) 2090-2096
  • 57 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017; 195 (04) 438-442
  • 58 L'Her E, Deye N, Lellouche F. et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med 2005; 172 (09) 1112-1118
  • 59 Carteaux G, Millán-Guilarte T, De Prost N. et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med 2016; 44 (02) 282-290
  • 60 Frat JP, Ragot S, Coudroy R. et al; REVA network. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit Care Med 2018; 46 (02) 208-215
  • 61 Cressoni M, Chiumello D, Algieri I. et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med 2017; 43 (05) 603-611
  • 62 Menga LS, Delle Cese L, Rosà T. et al. Respective effects of helmet pressure support, continuous positive airway pressure, and nasal high-flow in hypoxemic respiratory failure: a randomized crossover clinical trial. Am J Respir Crit Care Med 2023; 207 (10) 1310-1323
  • 63 Grieco DL, Maggiore SM, Roca O. et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med 2021; 47 (08) 851-866
  • 64 Huang Z, Chen YS, Yang ZL, Liu JY. Dexmedetomidine versus midazolam for the sedation of patients with non-invasive ventilation failure. Intern Med 2012; 51 (17) 2299-2305
  • 65 Carrillo A, Gonzalez-Diaz G, Ferrer M. et al. Non-invasive ventilation in community-acquired pneumonia and severe acute respiratory failure. Intensive Care Med 2012; 38 (03) 458-466
  • 66 Kangelaris KN, Ware LB, Wang CY. et al. Timing of intubation and clinical outcomes in adults with acute respiratory distress syndrome. Crit Care Med 2016; 44 (01) 120-129
  • 67 Bello G, De Pascale G, Antonelli M. Noninvasive ventilation. Clin Chest Med 2016; 37 (04) 711-721
  • 68 Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med 2017; 43 (02) 192-199
  • 69 Duan J, Yang J, Jiang L. et al. Prediction of noninvasive ventilation failure using the ROX index in patients with de novo acute respiratory failure. Ann Intensive Care 2022; 12 (01) 110
  • 70 Tonelli R, Fantini R, Tabbì L. et al. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med 2020; 202 (04) 558-567
  • 71 Rochwerg B, Einav S, Chaudhuri D. et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Med 2020; 46 (12) 2226-2237
  • 72 Ferreyro BL, Angriman F, Munshi L. et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: a systematic review and meta-analysis. JAMA 2020; 324 (01) 57-67
  • 73 Oczkowski S, Ergan B, Bos L. et al. ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. Eur Respir J 2022; 59 (04) 2101574
  • 74 Pitre T, Zeraatkar D, Kachkovski GV. et al. Noninvasive oxygenation strategies in adult patients with acute hypoxemic respiratory failure: a systematic review and network meta-analysis. Chest 2023; 164 (04) 913-928
  • 75 Azoulay E, Russell L, Van de Louw A. et al; Nine-i Investigators. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med 2020; 46 (02) 298-314
  • 76 Pelaia C, Bruni A, Garofalo E. et al. Oxygenation strategies during flexible bronchoscopy: a review of the literature. Respir Res 2021; 22 (01) 253
  • 77 Kim EJ, Jung CY, Kim KC. Effectiveness and safety of high-flow nasal cannula oxygen delivery during bronchoalveolar lavage in acute respiratory failure patients. Tuberc Respir Dis (Seoul) 2018; 81 (04) 319-329
  • 78 Antonelli M, Conti G, Riccioni L, Meduri GU. Noninvasive positive-pressure ventilation via face mask during bronchoscopy with BAL in high-risk hypoxemic patients. Chest 1996; 110 (03) 724-728
  • 79 Antonelli M, Pennisi MA, Conti G. et al. Fiberoptic bronchoscopy during noninvasive positive pressure ventilation delivered by helmet. Intensive Care Med 2003; 29 (01) 126-129
  • 80 Simon M, Braune S, Frings D, Wiontzek AK, Klose H, Kluge S. High-flow nasal cannula oxygen versus non-invasive ventilation in patients with acute hypoxaemic respiratory failure undergoing flexible bronchoscopy–a prospective randomised trial. Crit Care 2014; 18 (06) 712
  • 81 Saksitthichok B, Petnak T, So-Ngern A, Boonsarngsuk V. A prospective randomized comparative study of high-flow nasal cannula oxygen and non-invasive ventilation in hypoxemic patients undergoing diagnostic flexible bronchoscopy. J Thorac Dis 2019; 11 (05) 1929-1939
  • 82 Carron M, Freo U, Zorzi M, Ori C. Predictors of failure of noninvasive ventilation in patients with severe community-acquired pneumonia. J Crit Care 2010; 25 (03) 540.e9-540.e14
  • 83 Cillóniz C, Ewig S, Ferrer M. et al. Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis. Crit Care 2011; 15 (05) R209
  • 84 Menga LS, Cese LD, Bongiovanni F. et al. High failure rate of noninvasive oxygenation strategies in critically ill subjects with acute hypoxemic respiratory failure due to COVID-19. Respir Care 2021; 66 (05) 705-714
  • 85 Grieco DL, Menga LS, Cesarano M. et al; COVID-ICU Gemelli Study Group. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: The HENIVOT Randomized Clinical Trial. JAMA 2021; 325 (17) 1731-1743
  • 86 Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2016; 315 (22) 2435-2441
  • 87 Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019; 85 (09) 1014-1023
  • 88 Nolan JP, Kelly FE. Airway challenges in critical care. Anaesthesia 2011; 66 (Suppl. 02) 81-92
  • 89 Higgs A, McGrath BA, Goddard C. et al; Difficult Airway Society, Intensive Care Society, Faculty of Intensive Care Medicine, Royal College of Anaesthetists. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth 2018; 120 (02) 323-352
  • 90 Russotto V, Myatra SN, Laffey JG. et al; INTUBE Study Investigators. Intubation practices and adverse peri-intubation events in critically ill patients from 29 countries. JAMA 2021; 325 (12) 1164-1172
  • 91 Jaber S, Monnin M, Girard M. et al. Apnoeic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxaemic patients in the intensive care unit: the single-centre, blinded, randomised controlled OPTINIV trial. Intensive Care Med 2016; 42 (12) 1877-1887
  • 92 Cook TM, El-Boghdadly K, McGuire B, McNarry AF, Patel A, Higgs A. Consensus guidelines for managing the airway in patients with COVID-19: Guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists. Anaesthesia 2020; 75: 785-799
  • 93 De Jong A, Myatra SN, Roca O, Jaber S. How to improve intubation in the intensive care unit. Update on knowledge and devices. Intensive Care Med 2022; 48 (10) 1287-1298
  • 94 Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev 2015; 1 (01) CD008807
  • 95 Cutuli SL, Grieco DL, Michi T. et al. Personalized respiratory support in ARDS: a physiology-to-bedside review. J Clin Med 2023; 12 (13) 4176
  • 96 Ranieri VM, Rubenfeld GD, Thompson BT. et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 97 Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse?. Crit Care 2018; 22 (01) 264
  • 98 Amato MB, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 99 Bellani G, Guerra L, Musch G. et al. Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 2011; 183 (09) 1193-1199
  • 100 Cavalcanti AB, Suzumura EA, Laranjeira LN. et al; Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318 (14) 1335-1345
  • 101 Brower RG, Lanken PN, MacIntyre N. et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351 (04) 327-336
  • 102 Mercat A, Richard J-CM, Vielle B. et al; Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (06) 646-655
  • 103 Meade MO, Cook DJ, Guyatt GH. et al; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (06) 637-645
  • 104 Briel M, Meade M, Mercat A. et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303 (09) 865-873
  • 105 Battaglini D, Fazzini B, Silva PL. et al. Challenges in ARDS definition, management, and identification of effective personalized therapies. J Clin Med 2023; 12 (04) 1381
  • 106 Chen L, Del Sorbo L, Grieco DL. et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am J Respir Crit Care Med 2020; 201 (02) 178-187
  • 107 Yoshida T, Amato MBP, Grieco DL. et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 2018; 197 (08) 1018-1026
  • 108 Grieco DL, Maggiore SM, Bellani G. et al; IPERPEEP study group. Individualized positive end-expiratory pressure guided by end-expiratory lung volume in early acute respiratory distress syndrome: study protocol for the multicenter, randomized IPERPEEP trial. Trials 2022; 23 (01) 63
  • 109 Chiumello D, Cressoni M, Chierichetti M. et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 2008; 12 (06) R150
  • 110 Talmor D, Sarge T, Malhotra A. et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 111 Fan E, Wilcox ME, Brower RG. et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 2008; 178 (11) 1156-1163
  • 112 Gattinoni L, Pesenti A, Carlesso E. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20 years. Intensive Care Med 2013; 39 (11) 1909-1915
  • 113 Guérin C, Reignier J, Richard JC. et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368 (23) 2159-2168
  • 114 Papazian L, Munshi L, Guérin C. Prone position in mechanically ventilated patients. Intensive Care Med 2022; 48 (08) 1062-1065
  • 115 Thomas PJ, Paratz JD. Is there evidence to support the use of lateral positioning in intensive care? A systematic review. Anaesth Intensive Care 2007; 35 (02) 239-255
  • 116 Meli A, Barbeta Viñas E, Battaglini D. et al. Lateral position during severe mono-lateral pneumonia: an experimental study. Sci Rep 2020; 10 (01) 19372
  • 117 Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 2016; 2016 (06) CD002787
  • 118 Peek GJ, Mugford M, Tiruvoipati R. et al; CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374 (9698) 1351-1363
  • 119 Combes A, Hajage D, Capellier G. et al; EOLIA Trial Group, REVA, and ECMONet. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 2018; 378 (21) 1965-1975