Skip to main content
Log in

Third harmonic generation of cosh-Gaussian laser beam in arrays of vertically aligned carbon nanotube

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this present study, we have theoretically investigated the enhanced cosh-Gaussian laser beam third harmonic generation via the nonlinear interaction with vertically aligned arrays of carbon nanotube. As a high power cosh-Gaussian laser interacts with carbon nanotube medium, the atoms of this nano dimension medium are quickly ionized and formed the performed plasma. Owing to passes of lighter mass electron cylinder as compared with the mass of ion cylinder, the electron cylinder might be displaced. The nonlinearity is raised due to electrostatic restoration force on electrons. This cosh-Gaussian laser beam has enough potential to imparts the oscillatory velocity to conducting electrons of nano tube and efficiently absorbed at the surface plasmon resonance frequency. Analytic expressions of nonlinear third harmonic current density and laser third harmonic field are derived. The plotted graphical profiles promise the efficient and tunable generation of laser third harmonic field via the variation of beam decentered parameter, laser beam width, nanotube radii, inter carbon nanotube separation, initial electric field amplitude of laser beam and electron–ion collisional frequency. Resonant field amplitude of laser third harmonic is observed at the laser beam frequency becomes \(1/\sqrt 2\) times of the electron plasma frequency. As the laser beam transverse propagation distance become near the 0.95 times the initial beam width, enhanced third harmonic field might be generated. The laser beam decentered parameter plays an effective role for field enhancement of third harmonic without change of laser beam frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The data that supports the findings of this study are available within this article.

Code availability

Not applicable.

References

  • Abedi-Varaki, M., Jafari, S.: Second-harmonic generation of a linearly polarized laser pulse propagating through magnetized plasma in the presence of a planar magnetostatic wiggler. Eur. Phys. J. plus 1, 133–137 (2018)

    Google Scholar 

  • Aggarwal, M., Vij, S., Kant, N.: Wiggler magnetic field assisted second harmonic generation in clusters. Eur. Phys. J. D 69, 149 (2015)

    ADS  Google Scholar 

  • Babu, S., Kumar, A., Patel, R.J., Kumar, A., Varma, A.: Stimulated Raman scattering of X-mode laser in a plasma channel laser part. Beams 2021, 9919467 (2021)

    Google Scholar 

  • Babu, S., Kumar, A., Patel, R.J., Kumar, A., Varma, A.: Decay instability of X-mode laser in a magnetized plasma embedded with clusters. Opt. Quant. Electron. 55, 119 (2022a)

    Google Scholar 

  • Babu, S., Kumar, A., Patel, R.J., Kumar, A., Varma, A.: Decay instability of X-mode laser into upper hybrid and electron Bernstein waves in a plasma. Opt. Quant. Electron. 54, 710 (2022b)

    Google Scholar 

  • Ganeev, R.A.: High-order harmonic generation in laser-induced low-density plasma: past and recent achievements. Appl. Phys. B 129, 17 (2023)

    ADS  Google Scholar 

  • Ganeev, R.A., Naik, P.A., Singhal, H., Chakera, J.A., Kumar, M., Joshi, M.P., Srivastava, A.K., Gupta, P.D.: High-order harmonic generation in carbon-nanotube-containing plasma plumes. Phys. Rev. A 83(1), 013820 (2011)

    ADS  Google Scholar 

  • Ganeev, R.A., Kim, V.V., Butikova, J., Atvars, A., Grube, J., Sarakovskis, A., Ubelis, A.: High-order harmonics generation in Cd and Pd laser-induced plasmas. Opt. Express 31(16), 26626–26642 (2023)

    ADS  Google Scholar 

  • Javan, N.S.: Raman parametric excitation effect upon the third harmonic generation by a metallic nanoparticle lattice. J. Appl. Phys. 118, 073104 (2015)

    ADS  Google Scholar 

  • Javan, N.S., Amjadi, N., Mohammadzadeh, H.: Dielectric coats effect on the third harmonic generation by a metallic nanoparticle lattice exposed to intense laser radiation. Phys. Plasmas 23, 123114 (2016)

    ADS  Google Scholar 

  • Jeet, R., Kumar, A., Kumar, A., Babu, S., Varma, A.: Acceleration of electrons by a lower hybrid wave in a magnetic mirror. J. Korean Phys. Soc. 78, 1179–1184 (2021)

    ADS  Google Scholar 

  • Kumar, A., Kumar, A., Varma, A.: Excitation of electron Bernstein waves by beating of two cosh–Gaussian laser beams in a collisional plasma. Laser Phys. 31, 106001 (2021)

    ADS  Google Scholar 

  • Kumar, A., Kumar, A., Mishra, S.P., Yadav, M.S., Varma, A.: Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams. Opt. Quant. Electron. 54, 753 (2022)

    Google Scholar 

  • Kumar, A., Kumar, A., Varma, A.: Excitation of electron Bernstein wave by nonlinear interaction of two copropagating Hermite–Gaussian laser beams in collisional plasma with static magnetic field. Opt. Quant. Electron. 55, 598 (2023a)

    Google Scholar 

  • Kumar, A., Mishra, S.P., Kumar, A., Varma, A.: Electron Bernstein wave aided cosh–Gaussian laser beam absorption in plasma. Optik 273, 170436 (2023b)

    ADS  Google Scholar 

  • Makarov, S.V., Petrov, M.I., Zywietz, U., Milichko, V., Zuev, D., Lopanitsyna, N., Kuksin, A., Mukhin, I., Zograf, G., Ubyivovk, E., Smirnova, K.D., Starikov, S., Chichkov, B.N., Kivshar, Y.S.: Efficient second-harmonic generation in nanocrystalline silicon nanoparticle. Nano Lett. 17, 3047–3053 (2017)

    ADS  Google Scholar 

  • McMahon, M.D., Ferrara, D., Bowie, C.T., Lopez, R., Haglund, R.F., Jr.: Second harmonic generation from resonantly excited arrays of gold nanoparticles. Appl. Phys. B 87, 259–265 (2007)

    ADS  Google Scholar 

  • Parashar, J.: Effect of self-focusing on laser third harmonic generation in a clustered gas. Phys. Scr. 79, 015501 (2009)

    ADS  Google Scholar 

  • Safari, S., Niknam, A.R., Jahangiri, F., Jazi, B.: Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: Field profile optimization. J. Appl. Phys. 123, 153101 (2018)

    ADS  Google Scholar 

  • Salih, A.H., Tripathi, V.K., Pandey, B.K.: Second-harmonic generation of a Gaussian laser beam in a self-created magnetized plasma channel. IEEE Trans. Plasma Sci. 3, 324–328 (2003)

    ADS  Google Scholar 

  • Sharma, P., Sharma, R.P.: Study of second harmonic generation by high power laser beam in magneto plasma. Phys. Plasmas 19, 122106 (2012)

    ADS  Google Scholar 

  • Sharma, S., Vijay, A.: Nonlinear mixing of lasers and terahertz generation on CNT embedded metal surface. Opt. Int. J. Light Electron Opt. 199, 163381 (2019)

    Google Scholar 

  • Sharma, D., Singh, D., Malik, H.K.: Shape-dependent terahertz radiation generation through nanoparticles. Plasmonics 15, 177–178 (2020)

    Google Scholar 

  • Siahmazgi, R.N., Jafari, S.: Soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. J. Plasma Phys. 87, 905870312 (2021)

    Google Scholar 

  • Singh, K.P., Gupta, V.L., Tripathi, V.K.: Relativistic laser harmonic generation from plasmas with density ripple. Opt. Commun. 226, 377–386 (2003)

    ADS  Google Scholar 

  • Singh, K.P., Gupta, D.N., Yadav, S., Tripathi, V.K.: Relativistic second-harmonic generation of a laser from underdense plasmas. Phys. Plasmas 12, 013101 (2005)

    ADS  Google Scholar 

  • Singh, N., Gupta, N., Singh, A.: second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption. Opt. Commun. 381, 180–188 (2016)

    ADS  Google Scholar 

  • Stanciu, C., Ehlich, R., Petrov, V., Steinkellner, O., Herrmann, J., Hertel, I.V., Ya, G.S., Khrutchinski, A.A., Maksimenko, S.A., Rotermund, F., Campbell, E.E.B., Rohmund, F.: Experimental and theoretical study of third-order harmonic generation in carbon nanotubes. Appl. Phys. Lett. 81, 4064 (2002)

    ADS  Google Scholar 

  • Su, H.M., Ye, J.T., Tang, Z.K., Wong, K.S.: Resonant second-harmonic generation in monosized and aligned single-walled carbon nanotubes. Physical Rev. B 77, 125428 (2008)

    ADS  Google Scholar 

  • Thakur, V., Kant, N., Vij, S.: Harmonic generation by an interaction of laser with an array of anharmonic carbon nanotubes. Chin. J. Phys. 71, 660–668 (2021)

    MathSciNet  Google Scholar 

  • Tiwari, P.K., Tipathi, V.K.: Laser third-harmonic generation in clustered plasmas. Phys. Scr. 74, 682 (2006)

    ADS  Google Scholar 

  • Tyagi, Y., Tripathi, D., Kumar, A.: Bernstein wave aided laser third harmonic generation in a plasma. Phys. Plasmas 23, 093115 (2016)

    ADS  Google Scholar 

  • Tyagi, Y., Tripathi, D., Walia, K.: Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave. Phys. Plasmas 24, 043104 (2017)

    ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave excitation by beating of two copropagating super–Gaussian laser beam in a collisional nanocluster plasma. Optik 240, 166872 (2021a)

    ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave excitation and heating by nonlinear interactions of Laguerre and Hermite Gaussian laser beams in a magnetized plasma. Optik 228, 166212 (2021b)

    ADS  Google Scholar 

  • Varma, A., Kumar, A.: Excitation of lower hybrid wave by counterpropagating cosh Gaussian laser beams in a magnetized plasma. Optik 231, 166326 (2021c)

    ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave aided beat wave of Hermite–cosh–Gaussian laser beam absorption in a collisional nanocluster plasma. Optik 245, 167702 (2021d)

    ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave aided heating of collisional nanocluster plasma by nonlinear interactions of two super–Gaussian laser beams. Laser Phys. 32, 016001 (2022)

    ADS  Google Scholar 

  • Varma, A., Kumar, A., Kumar, A.: Nonlocal theory of excitation of electron Bernstein waves by a relativistic electron beam in plasma with loss-cone distribution of electron. Braz. J. Phys. 51, 661–666 (2021)

    ADS  Google Scholar 

  • Varma, A., Mishra, S.P., Kumar, A., Kumar, A.: Electron Bernstein wave aided Hermite cosh–Gaussian laser beam absorption in collisional plasma. Laser Phys. Lett. 20, 076001 (2023a)

    ADS  Google Scholar 

  • Varma, A., Mishra, S.P., Kumar, A., Kumar, A.: Nonlinear absorption of cosh–Gaussian laser beam in arrays of vertically aligned carbon nanotube. Plasmonics (2023b). https://doi.org/10.1007/s11468-023-02001-w

    Article  Google Scholar 

  • Varma, A., Mishra, S.P., Kumar, A., Kumar, A.: Electron plasma wave excitation by two co-propagating super–Gaussian laser beams in collisional nanocluster Plasma. JTAP 17, 1–6 (2023c)

    Google Scholar 

  • Yadav, M., Mandal, S., Kumar, A.: Nonlinear absorption and harmonic generation of laser in an assembly of CNT’s. Phys. Plasmas 26(7), 073110 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like grateful to Prof. V. K. Tripathi (IIT Delhi), Prof. M. S, Tiwari (Dr. H. S. Gour University, Sagar) and Prof. K. N. Uttam (Department of Physics, University of Allahabad, India) for valuable discussions and suggestion. We would like to thank Principal K. N. Govt. P. G. College, Gyanpur, Bhadohi for providing the research facilities.

Funding

The authors have no funding.

Author information

Authors and Affiliations

Authors

Contributions

"Ashish Varma do the theorectical part. S P Mishra and Arvind Kumar plots the graph. Asheel Kumar spervised the whole problem."

Corresponding author

Correspondence to Ashish Varma.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

The participant has consented to the submission of the case report to the journal.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, A., Mishra, S.P., Kumar, A. et al. Third harmonic generation of cosh-Gaussian laser beam in arrays of vertically aligned carbon nanotube. Opt Quant Electron 56, 905 (2024). https://doi.org/10.1007/s11082-024-06839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06839-0

Keywords

Navigation