Skip to main content
Log in

Efficient second and third harmonic generation in dual-layer lithium niobate microdisk resonator

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Lithium niobate thin film frequency doubler has extensive applications in the preparation of classical and quantum sources. In this study, we successfully fabricated microdisk resonators with a quality factor of 2.2×105 in reverse-polarization dual-layer x-cut lithium niobate for the first time. Based on the modal phase matching condition, efficient second harmonic generation with a record normalized conversion efficiency of ∼56000% W−1 and cascaded third harmonic generation with an efficiency of ∼6500% W−2 were obtained in the microdisk resonator. Compared with the periodically poled lithium niobate microcavity, the complex domain structure preparation processes are avoided. Our work provides a scheme for achieving highly efficient second-order nonlinear effects in non-periodically poled microcavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, and M. Lončar, Adv. Opt. Photon. 13, 242 (2021), arXiv: 2102.11956.

    Article  Google Scholar 

  2. X. Wu, Z. Hao, F. Bo, G. Zhang, and J. Xu, Chin. Sci. Bull. 67, 3915 (2022).

    Google Scholar 

  3. J. Liu, F. Bo, L. Chang, C. H. Dong, X. Ou, B. Regan, X. Shen, Q. Song, B. Yao, W. Zhang, C. L. Zou, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 65, 104201 (2022).

    Article  ADS  Google Scholar 

  4. J. Y. Chen, Z. H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y. P. Huang, Optica 6, 1244 (2019).

    Article  ADS  Google Scholar 

  5. J. Lu, M. Li, C. L. Zou, A. Al Sayem, and H. X. Tang, Optica 7, 1654 (2020), arXiv: 2007.07411.

    Article  ADS  Google Scholar 

  6. Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, and J. Xu, Photon. Res. 8, 311 (2020).

    Article  Google Scholar 

  7. X. Wu, L. Zhang, Z. Hao, R. Zhang, R. Ma, F. Bo, G. Zhang, and J. Xu, Opt. Lett. 47, 1574 (2022).

    Article  ADS  Google Scholar 

  8. L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, and J. Xu, Opt. Lett. 45, 3353 (2020).

    Article  ADS  Google Scholar 

  9. J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, Phys. Rev. Lett. 124, 163603 (2020), arXiv: 1910.03202.

    Article  ADS  Google Scholar 

  10. T. P. McKenna, H. S. Stokowski, V. Ansari, J. Mishra, M. Jankowski, C. J. Sarabalis, J. F. Herrmann, C. Langrock, M. M. Fejer, and A. H. Safavi-Naeini, Nat. Commun. 13, 1 (2022), arXiv: 2102.05617.

    Article  ADS  Google Scholar 

  11. U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, and Q. Lin, Phys. Rev. Lett. 127, 183601 (2021), arXiv: 2101.04877.

    Article  ADS  Google Scholar 

  12. Z. Ma, J. Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y. P. Huang, Phys. Rev. Lett. 125, 263602 (2020), arXiv: 2010.04242.

    Article  ADS  Google Scholar 

  13. P. Chen, I. Briggs, C. Cui, L. Zhang, M. Shah, and L. Fan, arXiv: 2307.11671.

  14. J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, Optica 6, 1455 (2019), arXiv: 1911.00083.

    Article  ADS  Google Scholar 

  15. T. Yuan, J. Wu, Y. Liu, X. Yan, H. Jiang, H. Li, Z. Liang, Q. Lin, Y. Chen, and X. Chen, Sci. China-Phys. Mech. Astron. 66, 284211 (2023).

    Article  ADS  Google Scholar 

  16. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. F. Ren, G. C. Guo, and M. Lončar, Opt. Express 25, 6963 (2017), arXiv: 1610.04197.

    Article  ADS  Google Scholar 

  17. J. Y. Chen, Y. M. Sua, H. Fan, and Y. P. Huang, OSA Continuum 1, 229 (2018).

    Article  Google Scholar 

  18. S. Liu, Y. Zheng, and X. Chen, Opt. Lett. 42, 3626 (2017).

    Article  ADS  Google Scholar 

  19. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, Phys. Rev. Appl. 11, 034026 (2019), arXiv: 1810.01299.

    Article  ADS  Google Scholar 

  20. C. Wang, H. Zhong, M. Ning, B. Fang, L. Li, and Y. Cheng, Photonics 10, 80 (2023).

    Article  Google Scholar 

  21. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, Laser Photon. Rev. 13, 1800288 (2019), arXiv: 1809.06476.

    Article  ADS  Google Scholar 

  22. L. Wang, X. Zhang, and F. Chen, Laser Photon. Rev. 15, 2100409 (2021), arXiv: 2108.11047.

    Article  ADS  Google Scholar 

  23. H. Du, X. Zhang, L. Wang, Y. Jia, and F. Chen, Opt. Lett. 48, 3159 (2023).

    Article  ADS  Google Scholar 

  24. H. Du, X. Zhang, L. Wang, and F. Chen, Opt. Express 31, 9713 (2023).

    Article  ADS  Google Scholar 

  25. L. Zhang, X. Wu, Z. Hao, R. Ma, F. Gao, F. Bo, G. Zhang, and J. Xu, Opt. Lett. 48, 1906 (2023), arXiv: 2302.05871.

    Article  ADS  Google Scholar 

  26. X. Guo, C. L. Zou, and H. X. Tang, Optica 3, 1126 (2016).

    Article  ADS  Google Scholar 

  27. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, Phys. Rev. Appl. 6, 014002 (2016).

    Article  ADS  Google Scholar 

  28. A. Pan, C. Hu, C. Zeng, and J. Xia, Opt. Express 27, 35659 (2019).

    Article  ADS  Google Scholar 

  29. Q. Luo, Z. Z. Hao, C. Yang, R. Zhang, D. H. Zheng, S. G. Liu, H. D. Liu, F. Bo, Y. F. Kong, G. Q. Zhang, and J. J. Xu, Sci. China-Phys. Mech. Astron. 64, 234263 (2020).

    Article  ADS  Google Scholar 

  30. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).

    Article  ADS  Google Scholar 

  31. X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Phys. Rev. A 83, 023803 (2011).

    Article  ADS  Google Scholar 

  32. H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, Opt. Lett. 42, 3267 (2017).

    Article  ADS  Google Scholar 

  33. X. Sun, H. Liang, R. Luo, W. C. Jiang, X. C. Zhang, and Q. Lin, Opt. Express 25, 13504 (2017).

    Article  ADS  Google Scholar 

  34. X. Jiang, and L. Yang, Light Sci. Appl. 9, 24 (2020), arXiv: 1911.06789.

    Article  ADS  Google Scholar 

  35. J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, Phys. Rev. Lett. 122, 173903 (2019).

    Article  ADS  Google Scholar 

  36. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, Opt. Express 22, 30924 (2014), arXiv: 1410.2625.

    Article  ADS  Google Scholar 

  37. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, Opt. Express 25, 24531 (2017).

    Article  ADS  Google Scholar 

  38. J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, Nanomaterials 9, 1218 (2019).

    Article  Google Scholar 

  39. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, Opt. Lett. 43, 4116 (2018), arXiv: 1806.00099.

    Article  ADS  Google Scholar 

  40. Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, Sci. China-Phys. Mech. Astron. 61, 114211 (2018).

    Article  ADS  Google Scholar 

  41. R. Zhuang, J. He, Y. Qi, and Y. Li, Adv. Mater. 35, 2208113 (2023).

    Article  Google Scholar 

  42. R. Gao, N. Yao, J. Guan, L. Deng, J. Lin, M. Wang, L. Qiao, W. Fang, and Y. Cheng, Chin. Opt. Lett. 20, 011902 (2022).

    Article  ADS  Google Scholar 

  43. R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin, J. Guan, L. Deng, M. Wang, L. Qiao, and Y. Cheng, New J. Phys. 23, 123027 (2021), arXiv: 2102.00399.

    Article  ADS  Google Scholar 

  44. A. Shams-Ansari, G. Huang, L. He, Z. Li, J. Holzgrafe, M. Jankowski, M. Churaev, P. Kharel, R. Cheng, D. Zhu, N. Sinclair, B. Desiatov, M. Zhang, T. J. Kippenberg, and M. Lončar, APL Photon. 7, 081301 (2022), arXiv: 2203.17133.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Bo.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 12034010, 12134007, 11734009, 92050111, 12074199, 92050114, and 12004197), and the 111 Project (Grant No. B23045).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Wu, X., Luo, Q. et al. Efficient second and third harmonic generation in dual-layer lithium niobate microdisk resonator. Sci. China Phys. Mech. Astron. 67, 254211 (2024). https://doi.org/10.1007/s11433-023-2322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2322-2

Navigation