Skip to main content
Log in

Analysis of mixed convective thermal slip flow with nanofluid mixtures over a curved surface

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The remarkable characteristics of hybrid nanofluids, including enhanced heat transfer rates, attractive thermal conductivity, and cost-effectiveness, have garnered significant attention from researchers worldwide. This numerical analysis focuses on investigating the impact of velocity slip in the radiative hybrid nanofluid (Cu–TiO2/water) flow over a curved sheet. Additionally, the study explores thermal slip in the boundary layer flow in the presence of viscous dissipation. The bvp4c method, implemented through MATLAB software, is utilized for obtaining mathematical results. The influence of various governing parameters on virtual flow properties, velocity, and temperature is examined, with the results presented graphically. Key quantities such as wall shear stress and heat transfer coefficient are calculated, and the outcomes are tabulated and graphically represented. The findings highlight the thermal behavior of the system, indicating an enhancement in the presence of nanoparticles, thermal radiation, and viscous dissipation. Moreover, the fluid velocity increases with greater curvature effects. These insights hold potential applications in engineering and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

No data was associated in the manuscript.

Abbreviations

\(\left({r}_{0},{s}_{0}\right)\) :

Curvilinear coordinates

\(\left({u}_{0},{v}_{0}\right)\) :

Velocity components

\({R}_{0}\) :

Radius of curvature

\(V\) :

Velocity vector

\(\rho\) :

Fluid density

\(\mu\) :

Dynamic viscosity

\(\upsilon\) :

Kinematic viscosity

\({c}_{{\text{p}}}\) :

Specific heat at constant pressure

\(k\) :

Thermal conductivity

\(T\) :

Temperature of fluid

\({T}_{{\text{w}}}\) :

Temperature at the wall

\({T}_{\infty }\) :

Ambient temperature

\({p}_{o}\) :

The pressure

\({L}_{1}\) :

Velocity slip parameter

\({\lambda }_{1}\) :

Mixed convection parameter

\({\text{Gr}}\) :

Grashof number

\(\Gamma\) :

Curvature parameter

\({\text{Ec}}\) :

Eckert number

\({L}_{2}\) :

Thermal slip parameter

\({\text{Pr}}\) :

Prandtl number

\({\text{Rd}}\) :

Radiation parameter

\(f\) :

Base fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

References

  1. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (Technical Report (Argonne National Lab, IL, USA, 1995)

    Google Scholar 

  2. J. Traciak, G. Zyla, Effect of nanoparticles saturation on the surface tension of nanofluids. J. Mol. Liq. 363, 119937 (2022)

    Article  Google Scholar 

  3. M.M. Ghosh, S. Das, Molecular dynamics and Brownian dynamics-based studies on interfacial heat conduction from a heat source to a nanofluid for estimating the enhancement in thermal conductivity of the nanofluid. ApplPhys. A. 126, 694 (2020)

    ADS  Google Scholar 

  4. A.A. Ibiyemi, G.T. Yusuf, Rheological investigation of strain rate and magnetic field on the magnetorheology of zinc ferrite ferrofluid. ApplPhys. A. 128, 591 (2022)

    ADS  Google Scholar 

  5. Y. Zhang, X. Guo, Z. Li, C. Wang, T. Liu, K. Zhang, Study on the tribological properties of Fe3O4@CNTs nanofluids acting on the textured ceramics. ApplPhys. A. 128, 161 (2022)

    ADS  Google Scholar 

  6. M. Ferdows, S.O. Adesanya, F. Alzahrani, T.A. Yusuf, Numerical investigation of a boundary layer water-based nanofluid flow with induced magnetic field. Phys. A Stat. Mech. Appl. 570, 125492 (2021)

    Article  Google Scholar 

  7. M. Ghazvini, H. Maddah, R. Peymanfar, M.H. Ahmadi, R. Kumar, Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticels. Phys. A Stat. Mech. Appl. 551, 124127 (2020)

    Article  Google Scholar 

  8. M. Manzur, M.U. Rahman, M. Khan, Computational study of Falkner-Skan flow of chemically reactive Cross nanofluid with heat generation/absorption. Phys. A Stat. Mech. Appl. 554, 124267 (2020)

    Article  MathSciNet  Google Scholar 

  9. B. Chakraborty, S. Maur, A.K. Pradhan, B. Chatterjee, S. Dalai, Investigations on dielectric characteristics of hybrid nanofluids through time and frequency domain spectroscopic measurement. J. Mol. Liq. 366, 120347 (2022)

    Article  Google Scholar 

  10. Y. Huang, C. Zou, M. Chen, H. Sun, Research on stability and thermal properties of SiC-MWCNT hybrid nanofluids based on thermal conductive oil. Appl. Phys. A 128, 794 (2022)

    Article  Google Scholar 

  11. A. Hussanan, M. Qasim, Z.M. Chen, Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid. Phys. A Stat. Mech. Appl. 550, 123957 (2020)

    Article  MathSciNet  Google Scholar 

  12. M. Jamei, I. Ahmadianfar, A rigorous model for prediction of oil-based hybrid nanofluids. Phys. A Stat. Mech. Appl. 556, 124827 (2020)

    Article  Google Scholar 

  13. S. Anitha, M. Pichumani, Numerical analysis on heat transfer performance of industrial double-tube heat exchanger using CNT: Newtonian/non-Newtonian hybrid nanofluids. J. Therm. Anal. Calorim. 147, 9603–9624 (2022)

    Article  Google Scholar 

  14. M. Yaseen, S.K. Rawat, M. Kumar, Cattaneo-Christov heat flux model in Darcy-Forchheimer radiative flow of MoS2-SiO2/kerosene oil between two parallel rotating disks. J. Therm. Anal. Calorim. 147, 10865–10887 (2022)

    Article  Google Scholar 

  15. F. Ahmed, A. Khanam, L. Samylingam, N. Aslfattahi, R. Saidur, Assessment of thermo-hydraulic performance of MXene-based nanofluid as coolant in a dimpled channel: a numerical approach. J. Therm. Anal. Calorim. 147, 12669–12692 (2022)

    Article  Google Scholar 

  16. A. Jaafar, I. Waini, A. Jamaludin, R. Nazar, I. Pop, MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chin. J. Phys. 79, 13–27 (2022)

    Article  Google Scholar 

  17. B. Kumbhakar, S. Nandi, A.J. Chamkha, Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: a multiple regression analysis. Chin. J. Phys. 79, 38–56 (2022)

    Article  MathSciNet  Google Scholar 

  18. S. Ahmed, H. Xu, Y. Zhou, Q. Yu, Modelling convective transport of hybrid nanofluid in a lid driven square cavity with consideration of Brownian diffusion and thermophoresis. Int. Commun. Heat Mass Transf. 137, 106226 (2022)

    Article  Google Scholar 

  19. S.A. Bakar, N.M. Arifin, N. Bachok, F.M. Ali, Effect of thermal radiation and MHD on hybrid Ag-TiO2/H2O nanofluid past a permeable porous medium with heat generation. Case Stud. Therm. Eng. 28, 101681 (2021)

    Article  Google Scholar 

  20. M. Irfan, M. Khan, W.A. Khan, Heat sink/source and chemical reaction in stagnation point flow of Maxwell nanofluid. ApplPhys. A 126, 892 (2020)

    ADS  Google Scholar 

  21. M. Pan, Y. Dong, Q. Zhou, L. Shen, Flow modulation and heat transport of radiatively heated particles settling in Rayleigh-Benard convection. Comput. Fluids 241, 105454 (2022)

    Article  Google Scholar 

  22. E.H. Aly, U.S. Mahabaleshwar, T. Anusha, W.K. Usafzai, I. Pop, Wall jet flow and heat transfer of a hybrid nanofluid subject to suction/injection with thermal radiation. Therm. Sci. Eng. Prog. 32, 101294 (2022)

    Article  Google Scholar 

  23. D. Srinivasacharya, K. SitaRamana, Thermal radiation and double diffusive effects on bioconvection flow of a nanofluid past an inclined wavy surface. Therm. Sci. Eng. Prog. 22, 100830 (2021)

    Article  Google Scholar 

  24. Y. Zhou, B. Xu, X. Zhang, Y. Yang, A comparative study on horizontal flame spread behaviors of thermoplastic polymers with different melt flow indexes under external radiation. Therm. Sci. Eng. Prog. 35, 101463 (2022)

    Article  Google Scholar 

  25. R. Raza, F. Mabood, R. Naz, S.I. Abdelsalam, Thermal transport of radiative Williamson fluid over stretchable curved surface. Therm. Sci. Eng. Prog. 23, 100887 (2021)

    Article  Google Scholar 

  26. N. Abbas, M.Y. Malik, M.S. Alqarni, S. Nadeem, Study of three dimensional stagnation point flow of hybrid nanofluid over an isotropic slip surface. Phys. A Stat. Mech. Appl. 554, 124020 (2020)

    Article  MathSciNet  Google Scholar 

  27. Z. Wang, Q. He, J. Huang, The immersed boundary-lattice Boltzmann model for solving solid-fluid interaction problem with Navier-slip boundary condition. Comput. Fluids 217, 104839 (2021)

    Article  Google Scholar 

  28. S. Lyu, S. Utyuzhnikov, A computational slip boundary condition for near-wall turbulence modeling. Comput. Fluids 246, 105628 (2022)

    Article  MathSciNet  Google Scholar 

  29. R. Rodakoviski, N.L. Dias, Direct simulation of two-dimensional Benard flow with free-slip boundary conditions. Comput. Fluids 228, 105040 (2021)

    Article  Google Scholar 

  30. Y.D. Reddy, B.S. Goud, MHD heat and mass transfer stagnation point nanofluid flow along a stretching sheet influenced by thermal radiation. J. Therm. Anal. Calorim. 147, 11991–12003 (2022)

    Article  Google Scholar 

  31. Y. Zhang, W. Li, Y. Li, G. Xie, Thermo-hydraulic characteristics of Al2O3-water nanofluid by preconditioned LBM. J. Therm. Anal. Calorim. 147, 9811–9827 (2022)

    Article  Google Scholar 

  32. N.F. Okechi, Stokes slip flow in a rough curved microchannel with transversely corrugated walls. Chin. J. Phys. 78, 495–510 (2022)

    Article  MathSciNet  Google Scholar 

  33. Z. Abbas, M. Naveed, M. Sajid, Heat transfer analysis for stretching flow over a curved surface with magnetic field. J. Eng. Thermophys. 22(4), 337–345 (2013)

    Article  Google Scholar 

  34. X. Tian, Z. Yuan, L. Han, X. Na, X. Liu, Entropy generation of MHD micropolar nanofluid past an exponentially stretching plate with higher order power-law slip model. Chin. J. Phys. 79, 69–88 (2022)

    Article  MathSciNet  Google Scholar 

  35. U.S. Mahabaleshwar, E.H. Aly, T. Anusha, MHD slip flow of a Casson hybrid nanofluid over a stretching/shrinking sheet with thermal radiation. Chin. J. Phys. 80, 74–106 (2022)

    Article  MathSciNet  Google Scholar 

  36. R.A. Alsulami, K. Premnath, M. Aljaghtham, Effects of Navier slip on film consideration heat transfer over upward facing horizontal flat surface with free edges. Int. Commun. Heat Mass Transf. 129, 105665 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkata Subba Rao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, S.V.K., Gangadhar, K., Rao, M.V.S. et al. Analysis of mixed convective thermal slip flow with nanofluid mixtures over a curved surface. Eur. Phys. J. Plus 139, 326 (2024). https://doi.org/10.1140/epjp/s13360-024-05119-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05119-w

Navigation