Skip to main content
Log in

Extra connectivity of the data center network—RRect

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

With the continuous expansion of network scale, fault tolerance and security in network operation have become increasingly important. The high vertex connectivity of the interconnection network indicates excellent fault tolerance. In order to address the drawbacks of traditional connectivity, the g-extra connectivity has been proposed to better reflect the fault tolerance of the network. RRect is a newly proposed server-centered data center network with good interconnection structure, and it has excellent flexibility and energy efficiency. In this paper, we focus on the logical structure of RRect, denoted by \(RR_{n,m,k}\). Firstly, we investigate the extra connectivity of \(RR_{n,m,k}\), and, in detail, we prove that for \(n \ge 4\), \(m \ge 1\), and \(k \ge 4\), the \(\{1, 2, 3\}\)-extra connectivity of \(RR_{n,m,k}\) is \(2km(n-1) + mn - 2\), \(3km(n-1) + mn - 3\), and \(4km(n-1) - 4m\), respectively, which are about 2, 3, and 4 times of its traditional connectivity. Secondly, we conduct numerical simulation experiments on the extra connectivity of \(RR_{n,m,k}\) and evaluate the experimental performance. The result can provide a more comprehensive measurement of its reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adda M, Peratikou A (2017) Routing and fault tolerance in Z-Fat trees. IEEE Trans Parallel Distrib Syst 28(8):2373–2386

    Article  Google Scholar 

  2. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture. ACM SIGCOMM Comput Commun Rev 38(4):63–74

    Article  Google Scholar 

  3. Chang NW, Hsieh SY (2013) 2, 3-Extra connectivities of hypercube-like networks. Comput Syst Sci 79(5):669–688

    Article  Google Scholar 

  4. Cheng D (2022) Extra connectivity and structure connectivity of 2-dimensional torus networks. Int J Found Comput Sci 33(2):155–173

    Article  MathSciNet  Google Scholar 

  5. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

    Article  Google Scholar 

  6. Fabrega J, Fiol MA (1996) On the extra connectivity of graphs. J Telecommun Syst 155:49–57

    Google Scholar 

  7. Farrington N, Porter G, Radhakrishnan S, Bazzaz HH, Vahdat A (2010) Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput Commun Rev 40(4):339–350

    Article  Google Scholar 

  8. Fu Y, Hou Y, Wang Z, Gao K, Wang L (2021) Distributed scheduling problems in intelligent manufacturing systems. Tsinghua Sci Technol 26(5):625–645

    Article  Google Scholar 

  9. Ghemawat S, Gobioff H and Leung S T (2003) The Google file system. In: ACM SIGOPS Operating Systems Review, pp 29–43

  10. Gu L, Cui M, Xu L, Xu X (2023) Collaborative offloading method for digital twin empowered cloud edge computing on internet of vehicles. Tsinghua Sci Technol 28(3):433–451

    Article  Google Scholar 

  11. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) BCube: a highperformance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput Commun Rev 39(4):63–74

    Article  Google Scholar 

  12. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) DCell: a scalable and fault tolerant network structure for data centers. In: Proceedings of Fourth International Conference on IEEE Computer Communications and Networks, vol 38, no 4, pp 75–86

  13. Guo H, Sabir E, Mamut A (2022) The \(g\)-extra connectivity of folded crossed cubes. J Parallel Distrib Comput 166:139–146

    Article  Google Scholar 

  14. Guo L (2018) Research on conditional connectivity and faulttolerant routing of generalized hypercubes. Soochow University

  15. Li D, Guo C, Wu H, Tan K, Lu S (2009) Ficonn: using backup port for server interconnection in data centers. In: International Conference on Computer Communications, pp 2276–2285

  16. Li M, Tian Z, Du X, Yuan X, Shan C, Guizani M (2023) Power normalized cepstral robust features of deep neural networks in a cloud computing data privacy protection scheme. Neurocomputing 518:165–173

    Article  Google Scholar 

  17. Li X, Fan J, Lin CK, Cheng B, Jia X (2019) The extra connectivity, extra conditional diagnosability and t/k-diagnosability of the data center network DCell. Theoret Comput Sci 766:16–29

    Article  MathSciNet  Google Scholar 

  18. Li X, Lin CK, Fan J, Jia C, Cheng B, Zhou J (2021) Relationship between extra connectivity and component connectivity in networks. Comput J 64(1):38–53

    Article  MathSciNet  Google Scholar 

  19. Li Z, Yang Y (2018) A novel network structure with power efficiency and high availability for data centers. IEEE Trans Parallel Distrib Syst 29(2):254–268

    Article  Google Scholar 

  20. Li Z, Guo Z, Yang Y (2016) BCCC: an expandable network for data centers. IEEE/ACM Trans Netw 24(6):3740–3755

    Article  Google Scholar 

  21. Li Z, Yang Y (2010) RRect: a novel server-centric data center network with high power efficiency and availability. IEEE Trans Cloud Comput 8(3):914–927

    Google Scholar 

  22. Li Z, Yang Y (2016) GBC3: a versatile cube-based server-centric network for data centers. IEEE Trans Parallel Distrib Syst 27(10):2895–2910

    Article  Google Scholar 

  23. Lin L, Xu L, Zhou S, Hsieh SY (2016) The extra, restricted connectivity and conditional diagnosability of splitstar networks. IEEE Trans Parallel Distrib Syst 27:533–545

    Article  Google Scholar 

  24. Liu H, Aljbri A, Song J, Jiang J, Hua C (2022) Research advances on AI-powered thermal management for data centers. Tsinghua Sci Technol 27(2):303–314

    Article  Google Scholar 

  25. Lv M, Cheng B, Fan J, Wang X, Zhou J, Yu J (2021) The conditional reliability evaluation of data center network BCDC. Comput J 64(9):1451–1464

    Article  MathSciNet  Google Scholar 

  26. Sabir E, Mamut A, Vumar E (2019) The extra connectivity of the enhanced hypercubes. Theoret Comput Sci 799:22–31

    Article  MathSciNet  Google Scholar 

  27. Terzenidis N, Giamougiannis G, Tsakyridis A, Spasopoulos D, Pleros N (2021) Performance analysis of a 1024-port Hipoaos OPS in DCN, HPC, and 5G fronthauling Ethernet applications. J Opt Commun Netw 13(7):182–192

    Article  Google Scholar 

  28. Wang G, David G, Kaminsky M, Papagiannaki K (2010) c-through: part-time optics in data centers. In: SIGCOMM, pp 327–338

  29. Wang X, Fan J, Jia X, Lin CK (2016) An efficient algorithm to construct disjoint path covers of DCell networks. Theoret Comput Sci 609:197–210

    Article  MathSciNet  Google Scholar 

  30. Wang X, Fan J, Lin CK, Jia X (2016) Vertex-disjoint paths in DCell networks. J Parallel Distrib Comput 96:38–44

    Article  Google Scholar 

  31. Wang X, Fan J, Lin C-K, Zhou J, Liu Z (2018) BCDC: a high-performance, server-centric data center network. J Comput Sci Technol 33(2):400–416

    Article  MathSciNet  Google Scholar 

  32. Yang W, Meng J (2010) Extra connectivity of hypercubes. Appl Math Lett 22(6):887–891

    Article  Google Scholar 

  33. Yang Y, Wang Q, Li Z, Liang H, Li J (2021) Fault-tolerant design for data efficient retransmission in WiNoC. Tsinghua Sci Technol 26(1):85–94

    Article  Google Scholar 

  34. Yi Y, Fan J, Cheng B, Wang Y, Yu J (2022) The 3-extra connectivity of the data center network BCube. Comput J 65(12):3199–3208

    Article  MathSciNet  Google Scholar 

  35. Yin S, Xu L (2022) On the \(g\)-extra connectivity of the enhanced hypercubes. Comput J 65(9):2339–2346

    Article  MathSciNet  Google Scholar 

  36. Zhang H, Zhou S, Liu X, Yu Z (2023) Extra (component) connectivity and diagnosability of bubble sort networks. Theoret Comput Sci 940:180–189

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grants 61932013, 62172291, 62102195, and 62102196, in part by the Research Foundation of Jiangsu for 333 High-Level Talents Training Project under Grant BRA2020065, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200753, in part by Jiangsu Postdoctoral Science Foundation Funded Project under Grant 2021K096A, in part by the Future Network Scientific Research Fund Project under Grant FNSRFP-2021-YB-60, in part by the Natural Science Fund for Colleges and Universities in Jiangsu Province under Grant 21KJB520026, and in part by the Fundamental Research Funds for the Central Universities of Jilin University under Grant 93K172020K25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Xiao.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Ethical approval

It is not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N., Lv, M., Fan, W. et al. Extra connectivity of the data center network—RRect. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06077-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06077-x

Keywords

Navigation