Skip to main content
Log in

Autoregressive conditional dynamic semivariance models with value-at-risk estimates

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A variant of the autoregressive conditional heteroscedastic (ARCH) process called as autoregressive conditional dynamic semivariance process (ARCDS) that closely relates to semivariance in the residuals is introduced and in the volatility formulation. As in ARCH formulation, the conditional volatility varies over time. The conditions for stationarity and regularity for the ARCDS process and the information matrix for the process are derived. To test whether the disturbances follow the ARCDS process, the Lagrangian multiplier test is adopted, where the squared ordinary least square residuals are regressed on the squares of the minimum of the past residuals and zero. A second model employs the peaks over the threshold (POT) approach. The Hill estimators are used to estimate the parameters and the threshold is computed based on the mean excess function. The model is used to forecast mean, volatility and value-at-risk (VaR) in the returns of the equity growth funds in India during November 2012 to December 2021. With an exception, the model provides superior 90% in-sample and out-samples forecasts. Simulations are performed. We find that combination of the ARCDS process with POT approach provides superior VaR forecasts in comparison to normal distribution across various significance levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The generated data and/or analysed during the current study are available in the Historical NAV section of Bluechipindia website. https://bluechipindia.co.in/MutualFund/MFInner.aspx?id=2

Code availability

Functions in excel and simulations in matlab.

References

  • Ali, M., Alam, N., & Rizvi, S. A. R. (2020). Coronavirus (COVID-19)—An eidemic or pandemic for financial markets. Journal of Behavioral and Experimental Finance. https://doi.org/10.1016/j.jbef.2020.100341

    Article  Google Scholar 

  • Alves, I. F., Neves, C., & Rosario, P. (2016). A general estimator for the right endpoint with an application to supercentenarian women’s records. Extremes, 20, 199–237.

    Article  Google Scholar 

  • Bera, A. K., Higgins, M. L., & Lee, S. (1992). Interaction between autocorrelation and conditional heteroscedasticity: A random-coefficient approach. Journal of Business & Economic Statistics, 10(2), 133–142.

    Article  Google Scholar 

  • Bhattacharyya, M., & Ritolia, G. (2008). Conditional VaR using EVT— – Towards a planned margin scheme. International Review of Financial Analysis, 17, 382–395.

    Article  Google Scholar 

  • Black, F. (1976). Studies of stock market volatility changes. In 1976 Proceedings of the American Statistical Association, Business and Economic Statistics Section (pp. 177–181).

  • Bloom, N. (2014). Fluctuations in uncertainty. Journal of Economic Perspectives, 28(2), 153–176.

    Article  Google Scholar 

  • Bollerslev, T., Engel R. F., & Nelson, D. B. (1994). Chapter 49 Arch models. In Handbook of Econometrics (Vol. 4, pp. 2959–3038).

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  Google Scholar 

  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis forecasting and control (5th ed.). Wiley.

    Google Scholar 

  • Braun, P. A., Nelson, D. B., & Sunier, A. M. (1995). Good news, bad news, volatility, and betas. Journal of Finance, 50, 1575–1603.

    Article  Google Scholar 

  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47, 239–253.

    Article  Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer.

    Book  Google Scholar 

  • Campbell, Y., & Cochrane, J. H. (1995). By force of habit: A consumption-based explanation of aggregate stock market behaviour. NBER Working Papers. No. 4995.

  • Cohen, J. P. (1982). The penultimate form of approximation to normal extremes. Advances in Applied Probability, 14, 324–339.

    Article  Google Scholar 

  • Crouhy, H., & Rockinger, M. (1997). Volatility clustering, asymmetric and hysteresis in stock returns: International evidence. Financial Engineering and the Japanese Markets, 4, 1–35.

    Article  Google Scholar 

  • Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1, 83–106.

    Article  Google Scholar 

  • Embrechts, P., Kluppelberg, C., & Mikosch, T. (1996). Modeling extremal events for insurance and finance. SpringerVerlag.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica, 50, 987–1007.

    Article  Google Scholar 

  • Fama, F. E., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25, 23–49.

    Article  Google Scholar 

  • Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–190.

    Article  Google Scholar 

  • Ghosh, S., & Resnick, S. (2010). A discussion on mean excess plots. Stochastic Processes and Their Applications, 120, 1492–1517.

    Article  Google Scholar 

  • Glosten, L. R., Jagannathan, R., & Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.

    Article  Google Scholar 

  • Guégan, D., & Diebolt, J. (1994). Probabilistic properties of the ARCH model. Statistica Sinica, 4, 71–87.

    Google Scholar 

  • Hentschel, L. (1995). All in the family: Nesting symmetric and asymmetric GARCH models. Journal of Financial Economics, 39, 71–104.

    Article  Google Scholar 

  • [Historical NAV]Bluechipindia;HistoricalNAV;https://bluechipindia.co.in/MutualFund/MFInner.aspx?id=2

  • Hosking, J. R. M., & Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 3, 339–349.

    Article  Google Scholar 

  • Jang, P. A., Jauch, M., & Matteson, D. S. (2022). Functional stochastic volatility in financial option surfaces. Data Science in Science, 1(1), 6–19. https://doi.org/10.1080/26941899.2022.2152764

    Article  Google Scholar 

  • Le, T. N. L., Abakah, E. J. A., & Tiwari, A. K. (2020). Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. National Library of Medicine. https://doi.org/10.1016/j.techfore.2020.120382

    Article  Google Scholar 

  • Leadbetter, M. R., & Rootzen, H. (1988). Extremal theory for stochastic processes. The Annals of Probability, 16, 431–478.

    Article  Google Scholar 

  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.

    Article  Google Scholar 

  • Nemeth, L., & Zempleni, A. (2020). Regression estimator for the tail index. Journal of Statistical Theory and Practice. https://doi.org/10.1007/s42519-020-00114-7

    Article  Google Scholar 

  • Rizvi, S. A. R., Arshad, S., & Alam, N. (2018). A tripartite inquiry into volatility-efficiency-integration nexus-case of emerging markets. Emerging Markets Review, 34, 143–161.

    Article  Google Scholar 

  • Sapp, R. A. T. (2016). Efficient estimation of distributional tail shape and the extremal index with applications to risk management. Journal of Mathematical Finance, 6, 626–659.

    Article  Google Scholar 

  • Schwert, G. W. (1989). Why does stock market volatility change over time? Journal of Finance, 44, 1115–1153.

    Article  Google Scholar 

  • Schwert, G. W. (1990). Stock volatility and the crash of ’87. Review of Financial Studies, 3, 77–102.

    Article  Google Scholar 

  • Shaun, Bond. (2007). An econometric model of downside risk. In J. Knight, & S. Satchell (Eds.) Forecasting volatility in the financial markets.

  • Sufang, Li., Dalun, Tu., & Yan, Z. (2022). Does geopolitical risk matter in crude oil and stock markets? Evidence from Disaggregated Data. Energy Economics, 113, 106191. https://doi.org/10.2139/ssrn.3991686

    Article  Google Scholar 

  • Taylor, S. J. (1986). Modeling financial time series. John Wiley and Sons.

    Google Scholar 

  • Tsay, R. S. (2005). Analysis of financial time series. Wiley Publications.

    Book  Google Scholar 

  • Yu, J.-S., & Hassan, M. K. (2008). Global and regional integration of the Middle East and North African (MENA) stock markets. The Quarterly Review of Economics and Finance, 48, 482–504.

    Article  Google Scholar 

  • Zakoïan, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18, 931–955.

    Article  Google Scholar 

  • Zhao, E., & Wu, C. (2020). Unified egg ellipse critical threshold estimation for the deformationbehavior of ultrahigh arch dams. Engineering Structures, 214, 110598.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sree Vinutha Venkataraman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 ARCDS process

Theorem 1

The ARCDS(p) process with \({\alpha }_{0}>0\) and \({\alpha }_{j}\ge 0 for j=\mathrm{1,2}\dots .p\) is stationary iff all the roots of the characteristic equation formed by the \({\alpha }^{\prime}s\) lie outside the unit circle.

Proof

$$ y_{t} /\psi_{t - 1} \sim N\left( {x_{t} ^{\prime}\beta , h_{t} } \right) $$
$$E\left({{y}_{t}}^{2}/{\psi }_{t-1}\right)={h}_{t}$$

Again, the constant relating variance to \({h}_{t}\) is ignored.

Suppose \({w}_{t}^{\prime}=\left({({\text{min}}\left({\epsilon }_{t},0\right))}^{2},{({\text{min}}\left({\epsilon }_{t-1},0\right))}^{2}\dots ..{({\text{min}}\left({\epsilon }_{t-p},0\right))}^{2}\right)\)

Expanding \(E\left({{y}_{t}}^{2}/{\psi }_{t-1}\right)\), we can see that the moment is a linear combination of \({w}_{t-1}.\)

Therefore, \(E\left( {w_{t} /\psi_{t - 1} } \right) = b + Aw_{t - 1}\)

where \(b=\left[\begin{array}{c}{\alpha }_{0}\\ 0\\ 0\\ .\\ .\\ 0\end{array}\right]\) and \(A=\left(\begin{array}{*{20}llll}{\alpha}_{1 }& {\alpha }_{2 } &\dots . & {\alpha }_{p } & 0\\ 1 & 0 &\dots. & 0 & 0 \\ 0 & 1 & \dots . & 0 & 0\\ & & \dots .\\ 0 & 0 & \dots . & 1 & 0\end{array}\right)\)

Now, expressing \({w}_{t-1}\) as \(b+A{w}_{t-2}\), \({w}_{t-2}\) as \(b+A{w}_{t-3}\) and continuing successively, we get

$$ E\left( {w_{t} /\psi_{t - k} } \right) = \left( {1 + A + A^{2} + \ldots + A^{k - 1} } \right)b + A^{k} w_{t - k} $$

Now, \(\mathop {{\text{lim}}}\limits_{k \to \infty } E\left( {w_{t} /\psi_{t - k} } \right) = \left( {1 - A} \right)^{ - 1} b\) exists iff all the roots \(\alpha \) of the characteristic equation are greater than 1 in absolute value implying that the roots lie outside the unit circle.

Since the expression is independent of t, the expression reflects the stationary variance for the unconditional distribution of y.

Theorem 2

The ARCDS process defined by the specification.

$$ y_{t} /\psi_{t - 1} \sim N\left( {0, h_{t} } \right), $$
$$ h_{t} = \alpha_{0} + \alpha_{1} \left( {\min \left( {y_{t - 1} ,0} \right)} \right)^{2} + \ldots + \alpha_{p} \left( {\min \left( {y_{t - p} ,0} \right)} \right)^{2} $$

is regular if \({\alpha }_{0}>0\) and \({\alpha }_{j}\ge 0 for j=\mathrm{1,2}\dots .p\)

Proof

The model \(y_{t} /\psi_{t - 1} \sim N\left( {0, h_{t} } \right)\),

$$ h_{t} = \alpha_{0} + \alpha_{1} \left( {\min \left( {y_{t - 1} ,0} \right)} \right)^{2} + \ldots + \alpha_{p} \left( {\min \left( {y_{t - p} ,0} \right)} \right)^{2} $$

is regular if:

  1. (a)

    for any random vector

    $${\xi }_{t}=\left[\begin{array}{c}{\xi }_{t-1}\\ {\xi }_{t-2}\\ {\xi }_{t-3}\\ .\\ .\\ {\xi }_{t-p}\end{array}\right]$$

    \(min h\left({\xi }_{t}\right)\ge \delta \) for positive \(\delta \)

  2. (b)

    \(E\left(\left|\frac{\partial h\left({\xi }_{t}\right)}{\partial {\alpha }_{i}}\right|\left|\frac{\partial h\left({\xi }_{t}\right)}{\partial {\xi }_{t-m}}\right||{\psi }_{t-m-1}\right)\) exists for all i, m and t.

Now, a) is satisfied as volatility is positive. \(h\left({\xi }_{t}\right)\ge {\alpha }_{0}>0\)

Consider b)

$$E\left(\left|\frac{\partial h\left({\xi }_{t}\right)}{\partial {\alpha }_{i}}\right|\left|\frac{\partial h\left({\xi }_{t}\right)}{\partial {\xi }_{t-m}}\right||{\psi }_{t-m-1}\right)=2{\alpha }_{m}E[{\left|{\text{min}}\left({\xi }_{t-i},0\right)\right|}^{2}|{\text{min}}({\xi }_{t-m},0)|\left|{\psi }_{t-m-1}\right]$$

as \({\alpha }_{m}>0\).

If i > m, \(E[|{\text{min}}({\xi }_{t-m},0)|\left|{\psi }_{t-m-1}\right]\) is finite.

If i = m, \(E[{\left|{\text{min}}\left({\xi }_{t-i},0\right)\right|}^{3}\left|{\psi }_{t-m-1}\right]\) is finite as conditional density is normal.

If i < m, we have,

$$ \begin{aligned} & 2\alpha_{m} E[\left| {{\text{min}}\left( {\xi_{t - m} ,0} \right)} \right|E(\left| {\min \left( {\xi_{t - i} ,0} \right)} \right|^{2} {|}\psi_{t - i - 1} )|\psi_{t - m - 1} {]} = \phi_{i.m,t} \\ & \quad = 2\alpha_{m} E[\left| {{\text{min}}\left( {\xi_{t - m} ,0} \right)} \right|\left( {\alpha_{0} + \mathop \sum \limits_{j = 1}^{p} \alpha_{j} (\min \left( {\xi_{t - i - j} ,0} \right))^{2} } \right){|}\psi_{t - m - 1} {]} \\ & \quad = 2\alpha_{m} \alpha_{0} E[\left| {{\text{min}}\left( {\xi_{t - m} ,0} \right)} \right||\psi_{t - m - 1} ] + \mathop \sum \limits_{j = 1}^{p} \alpha_{j} \phi_{i + j.m,t} \\ & \quad \quad 2\alpha_{m} E[\left| {{\text{min}}\left( {\xi_{t - m} ,0} \right)} \right| + \mathop \sum \limits_{j = 1}^{p} \alpha_{j} (\min \left( {\xi_{t - i - j} ,0} \right))^{2} {|}\psi_{t - m - 1} {]} \\ \end{aligned} $$

If the index on \(\phi \) is large such that i + j is greater that m or equal to m, we refer to the earlier cases of i > m and i = m. If i + j < m, the recursive process is administered.

Finally, we get an expression involving a constant times \(E{[(\left|{\text{min}}\left({\xi }_{t-i},0\right)\right|}^{3}\left|{\psi }_{t-m-1})\right]\) and another constant times \(E[|{\text{min}}({\xi }_{t-m},0)|]|{\psi }_{t-m-1}\). With finite no. of lags and finite constants as they are associated with finite no. of terms, requirement b) of the regularity condition is satisfied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataraman, S.V. Autoregressive conditional dynamic semivariance models with value-at-risk estimates. Ann Oper Res (2024). https://doi.org/10.1007/s10479-024-05925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-024-05925-6

Keywords

Navigation